Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 77(5): 491-499, 2023 May.
Article in English | MEDLINE | ID: mdl-36898969

ABSTRACT

We report on the use of leaf diffuse reflectance spectroscopy for plant disease detection. A smartphone-operated, compact diffused reflectance spectrophotometer is used for field collection of leaf diffuse reflectance spectra to enable pre-symptomatic detection of the progression of potato late blight disease post inoculation with oomycete pathogen Phytophthora infestans. Neural-network-based analysis predicts infection with >96% accuracy, only 24 h after inoculation with the pathogen, and nine days before visual late blight symptoms appear. Our study demonstrates the potential of using portable optical spectroscopy in tandem with machine learning analysis for early diagnosis of plant diseases.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Spectrum Analysis , Plant Leaves , Plant Diseases
2.
Optica ; 8(6): 861-869, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34504904

ABSTRACT

Solitons are self-sustaining particle-like wave packets found throughout nature. Optical systems such as optical fibers and mode-locked lasers are relatively simple, are technologically important, and continue to play a major role in our understanding of the rich nonlinear dynamics of solitons. Here we present theoretical and experimental observations of a new class of optical soliton characterized by pulses with large and positive chirp in normal dispersion resonators with strong spectral filtering. Numerical simulations reveal several stable waveforms including dissipative solitons characterized by large frequency chirp. In experiments with fiber cavities driven with nanosecond pulses, chirped dissipative solitons matching predictions are observed. Remarkably, chirped pulses remain stable in low quality-factor resonators despite large dissipation, which enables new opportunities for nonlinear pattern formation. By extending pulse generation to normal dispersion systems and supporting higher pulse energies, chirped dissipative solitons will enable ultrashort pulse and frequency comb sources that are simpler and more effective for spectroscopy, communications, and metrology. Scaling laws are derived to provide simple design guidelines for generating chirped dissipative solitons in microresonator, fiber resonator, and bulk enhancement cavity platforms.

3.
Phys Rev Res ; 3(3)2021 Nov.
Article in English | MEDLINE | ID: mdl-35434640

ABSTRACT

Optical Kerr resonators support a variety of stable nonlinear phenomena in a simple and compact design. The generation of ultrashort pulses and frequency combs has been shown to benefit several applications, including spectroscopy and telecommunications. The most common anomalous dispersion Kerr resonators can be accurately described by a well-studied mean-field Lugiato-Lefever equation (LLE). Recently observed highly chirped pulses in normal dispersion resonators with a spectral filter, however, cannot. Here we examine the LLE in the normal dispersion regime modified with a Gaussian spectral filter (LLE-F). In addition to solutions associated with the LLE, we find stable highly chirped pulses. Solutions are strongly dependent on the filter bandwidth. Because of the large changes per round trip, the validity of the LLE-F fails over a large range of experimentally relevant parameters. While the mean-field approach leads to accurate predictions with respect to the nonlinearity coefficient and the dispersion, the dependence of drive power on loss deviates significantly from an experimentally accurate model, which leads to opportunities for Kerr resonators including frequency comb generation from low-Q-factor cavities.

4.
Phys Rev Lett ; 125(3): 033902, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745409

ABSTRACT

Kerr resonators support novel nonlinear wave phenomena including technologically important optical solitons. Fiber Kerr resonator solitons enable wavelength and repetition-rate versatile femtosecond-pulse and frequency-comb generation. However, key performance parameters, such as pulse duration, lag behind those from traditional mode-locked laser-based sources. Here we present new pulse generation in dispersion-managed Kerr resonators based on stretched-pulse solitons, which support the shortest pulses to date from a fiber Kerr resonator. In contrast to established Kerr resonator solitons, stretched-pulse solitons feature Gaussian temporal profiles that stretch and compress each round trip. Experimental results are in excellent agreement with numerical simulations. The dependence on dispersion and drive power are detailed theoretically and experimentally and design guidelines are presented for optimizing performance. Kerr resonator stretched-pulse solitons represent a new stable nonlinear waveform and a promising technique for femtosecond pulse generation.

5.
Opt Express ; 25(12): 13481-13493, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788892

ABSTRACT

Ultrashort pulsed mode-locked lasers enable research at new time-scales and revolutionary technologies from bioimaging to materials processing. In general, the performance of these lasers is determined by the degree to which the pulses of a particular resonator can be scaled in energy and pulse duration before destabilizing. To date, milestones have come from the application of more tolerant pulse solutions, drawing on nonlinear concepts like soliton formation and self-similarity. Despite these advances, lasers have not reached the predicted performance limits anticipated by these new solutions. In this letter, towards resolving this discrepancy, we demonstrate that the route by which the laser arrives at the solution presents a limit to performance which, moreover, is reached before the solution itself becomes unstable. In contrast to known self-starting limitations stemming from suboptimal saturable absorption, we show that this limit persists even with an ideal saturable absorber. Furthermore, we demonstrate that this limit can be completely surmounted with an iteratively seeded technique for mode-locking. Iteratively seeded mode-locking is numerically explored and compared to traditional static seeding, initially achieving a five-fold increase in energy. This approach is broadly applicable to mode-locked lasers and can be readily implemented into existing experimental architectures.

SELECTION OF CITATIONS
SEARCH DETAIL
...