Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5151, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991003

ABSTRACT

Motor execution, observation, and imagery are important skills used in motor learning and rehabilitation. The neural mechanisms underlying these cognitive-motor processes are still poorly understood. We used a simultaneous recording of functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG) to elucidate the differences in neural activity across three conditions requiring these processes. Additionally, we used a new method called structured sparse multiset Canonical Correlation Analysis (ssmCCA) to fuse the fNIRS and EEG data and determine the brain regions of neural activity consistently detected by both modalities. Unimodal analyses revealed differentiated activation between conditions; however, the activated regions did not fully overlap across the two modalities (fNIRS: left angular gyrus, right supramarginal gyrus, as well as right superior and inferior parietal lobes; EEG: bilateral central, right frontal, and parietal). These discrepancies might be because fNIRS and EEG detect different signals. Using fused fNIRS-EEG data, we consistently found activation over the left inferior parietal lobe, superior marginal gyrus, and post-central gyrus during all three conditions, suggesting that our multimodal approach identifies a shared neural region associated with the Action Observation Network (AON). This study highlights the strengths of using the multimodal fNIRS-EEG fusion technique for studying AON. Neural researchers should consider using the multimodal approach to validate their findings.


Subject(s)
Electroencephalography , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Electroencephalography/methods , Imagery, Psychotherapy , Brain/diagnostic imaging
2.
Article in English | MEDLINE | ID: mdl-28507021

ABSTRACT

Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junction are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions.


Subject(s)
Tight Junctions/physiology , Animals , Humans , Immunity, Mucosal , Interleukin-13/physiology , Intestinal Mucosa/anatomy & histology , Mucous Membrane/anatomy & histology , Myosin-Light-Chain Kinase/physiology , Permeability , Tight Junctions/chemistry , Zonula Occludens-1 Protein/physiology
3.
J Cell Sci ; 130(1): 243-259, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27802160

ABSTRACT

Epithelia within tubular organs form and expand lumens. Failure of these processes can result in serious developmental anomalies. Although tight junction assembly is crucial to epithelial polarization, the contribution of specific tight junction proteins to lumenogenesis is undefined. Here, we show that ZO-1 (also known as TJP1) is necessary for the formation of single lumens. Epithelia lacking this tight junction scaffolding protein form cysts with multiple lumens and are defective in the earliest phases of polarization, both in two and three dimensions. Expression of ZO-1 domain-deletion mutants demonstrated that the actin-binding region and U5-GuK domain are crucial to single lumen development. For actin-binding region, but not U5-GuK domain, mutants, this could be overcome by strong polarization cues from the extracellular matrix. Analysis of the U5-GuK binding partners shroom2, α-catenin and occludin showed that only occludin deletion led to multi-lumen cysts. Like ZO-1-deficiency, occludin deletion led to mitotic spindle orientation defects. Single lumen formation required the occludin OCEL domain, which binds to ZO-1. We conclude that ZO-1-occludin interactions regulate multiple phases of epithelial polarization by providing cell-intrinsic signals that are required for single lumen formation.


Subject(s)
Actins/metabolism , Cell Culture Techniques/methods , Cell Polarity , Epithelial Cells/cytology , Epithelial Cells/metabolism , Occludin/metabolism , Zonula Occludens-1 Protein/metabolism , Cell Line , Cell Proliferation , Gene Knockdown Techniques , Humans , Mitosis , Morphogenesis , Phenotype , Protein Binding , Protein Transport , Tight Junctions/metabolism , Zonula Occludens-1 Protein/chemistry , alpha Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...