Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Org Lett ; 21(2): 508-512, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30628449

ABSTRACT

A total synthesis of N-desmethyl thalassospiramide C, a unique strained macrocyclic proteobacterial depsipeptide, enabled a detailed crystallographic study of its covalent complex with cathepsin K, a member of a medicinally important family of cysteine proteases. The study provides support for the mechanism of action, and the insight gained can be used for structure-based drug design targeting these calpain proteases.


Subject(s)
Cathepsin K/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine/chemistry , Serine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Molecular Structure
2.
Bioorg Med Chem Lett ; 28(20): 3372-3375, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30201291

ABSTRACT

We report here the design and synthesis of a novel series of benzylamines that are potent and selective inhibitors of uPA with promising oral availability in rat. Further evaluation of one representative (ZK824859) of the new structural class showed that this compound lowered clinical scores when dosed in either acute or chronic mouse EAE models, suggesting that uPA inhibitors of this type could be useful for the treatment of multiple sclerosis.


Subject(s)
Benzylamines/therapeutic use , Multiple Sclerosis/drug therapy , Serine Proteinase Inhibitors/therapeutic use , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Animals , Benzylamines/chemical synthesis , Benzylamines/chemistry , Benzylamines/pharmacokinetics , Binding Sites , Female , Humans , Mice , Models, Molecular , Molecular Structure , Rats , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Urokinase-Type Plasminogen Activator/chemistry
3.
Bioorg Med Chem Lett ; 28(9): 1459-1463, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29628327

ABSTRACT

A hit to lead process to identify reversible, orally available ADP receptor (P2Y12) antagonists lead compounds is described. High throughput screening afforded 1. Optimization of 1, using parallel synthesis methods, a methyl scan to identify promising regions for optimization, and exploratory SAR on these regions, provided 22 and 23. Compound 23 is an orally available, competitive reversible antagonist (KB = 94 nM for inhibition of ADP-induced platelet aggregation). It exhibits high metabolic stability in human, rat and dog liver microsomes and is orally absorbed. Although plasma level after oral dosing of 22 and 23 to rats is low, reasonable levels were achieved to merit extensive lead optimization of this structural class.


Subject(s)
Fluorenes/pharmacology , Receptors, Purinergic P2Y12/metabolism , Administration, Oral , Animals , Dogs , Dose-Response Relationship, Drug , Fluorenes/administration & dosage , Fluorenes/chemistry , High-Throughput Screening Assays , Humans , Microsomes, Liver/metabolism , Molecular Structure , Platelet Aggregation/drug effects , Rats , Structure-Activity Relationship
4.
Article in English | MEDLINE | ID: mdl-27795376

ABSTRACT

The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection.


Subject(s)
Antiviral Agents/pharmacokinetics , Hepacivirus/drug effects , Protease Inhibitors/pharmacokinetics , Simeprevir/pharmacokinetics , Viral Nonstructural Proteins/metabolism , Animals , Antiviral Agents/therapeutic use , Binding Sites , Dogs , Haplorhini , Hepacivirus/enzymology , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Mice , Molecular Structure , Protease Inhibitors/therapeutic use , Rats , Simeprevir/therapeutic use
5.
J Med Chem ; 57(5): 1753-69, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23672640

ABSTRACT

HCV serine protease NS3 represents an attractive drug target because it is not only essential for viral replication but also implicated in the viral evasion of the host immune response pathway through direct cleavage of key proteins in the human innate immune system. Through structure-based drug design and optimization, macrocyclic peptidomimetic molecules bearing both a lipophilic P2 isoindoline carbamate and a P1/P1' acylsulfonamide/acylsulfamide carboxylic acid bioisostere were prepared that possessed subnanomolar potency against the NS3 protease in a subgenomic replicon-based cellular assay (Huh-7). Danoprevir (compound 49) was selected as the clinical development candidate for its favorable potency profile across multiple HCV genotypes and key mutant strains and for its good in vitro ADME profiles and in vivo target tissue (liver) exposures across multiple animal species. X-ray crystallographic studies elucidated several key features in the binding of danoprevir to HCV NS3 protease and proved invaluable to our iterative structure-based design strategy.


Subject(s)
Antiviral Agents/therapeutic use , Drug Discovery , Lactams/therapeutic use , Protease Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Crystallography, X-Ray , Cyclopropanes , Dogs , Isoindoles , Lactams/chemistry , Lactams/pharmacology , Lactams, Macrocyclic , Macaca fascicularis , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/pharmacology , Rats , Sulfonamides/chemistry , Sulfonamides/pharmacology
6.
Bioorg Med Chem ; 19(16): 4690-703, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21798747

ABSTRACT

Hepatitis C virus (HCV) is a major health burden, with an estimated 170 million chronically infected individuals worldwide, and a leading cause of liver transplantation. Patients are at increased risk of developing liver cirrhosis, hepatocellular carcinoma and even liver failure. In the past two decades, several approaches have been adopted to inhibit non-structural viral proteins. The RNA-dependent RNA polymerase (NS5B) of HCV is one of the attractive validated targets for development of new drugs to block HCV infection. In this review, we report the recent progress made towards identifying and developing benzothiadiazines as HCV NS5B polymerase inhibitors. The substituted benzothiadiazine class was identified by HTS in 2002 as an NS5B inhibitor. Further optimization and modification of the core has improved the potency and pharmacokinetic properties of substituted benzothiadiazines. Research on palm site-binding benzothiadiazine analogs and related derivatives and analogs is discussed in this article.


Subject(s)
Antiviral Agents/chemistry , Benzothiadiazines/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Viral Nonstructural Proteins/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzothiadiazines/chemistry , Benzothiadiazines/therapeutic use , Drug Discovery , Enzyme Inhibitors/therapeutic use , Hepacivirus/enzymology , Hepacivirus/genetics , Hepatitis C/enzymology , Hepatitis C/pathology , Hepatitis C/physiopathology , Humans , Molecular Targeted Therapy , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
9.
Chem Biol Drug Des ; 74(1): 43-50, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19519743

ABSTRACT

Heat-shock protein-90 is an attractive target for anticancer drugs, as heat-shock protein-90 blockers such as the ansamycin 17-(allylamino)-17-demethoxygeldanamycin greatly reduce the expression of many signaling molecules that are disregulated in cancer cells and are key drivers of tumor growth and metastasis. While 17-(allylamino)-17-demethoxygeldanamycin has shown promise in clinical trials, this compound class has significant template-related drawbacks. In this paper, we describe a new, potent non-ansamycin small-molecule inhibitor of heat-shock protein-90, BX-2819, containing resorcinol and triazolothione rings. Structural studies demonstrate binding of BX-2819 to the ADP/ATP-binding pocket of heat-shock protein-90. The compound blocked expression of heat-shock protein-90 client proteins in cancer cell lines and inhibited cell growth with a potency similar to 17-(allylamino)-17-demethoxygeldanamycin. In a panel of four cancer cell lines, BX-2819 blocked growth with an average IC(50) value of 32 nM (range of 7-72 nM). Efficacy studies demonstrated that treatment with BX-2819 significantly inhibited the growth of NCI-N87 and HT-29 tumors in nude mice, consistent with pharmacodynamic studies showing inhibition of heat-shock protein-90 client protein expression in tumors for greater than 16 h after dosing. These data support further studies to assess the potential of BX-2819 and related analogs for the treatment of cancer.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , Benzoquinones/chemistry , Benzoquinones/pharmacology , Cell Line, Tumor , Computer Simulation , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HSP90 Heat-Shock Proteins/metabolism , HT29 Cells , Humans , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Mice , Mice, Nude , Transplantation, Heterologous , Triazoles/chemistry , Xenograft Model Antitumor Assays
10.
Bioorg Med Chem Lett ; 19(15): 4480-3, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19500983
11.
Thromb Res ; 122(4): 523-32, 2008.
Article in English | MEDLINE | ID: mdl-18495218

ABSTRACT

ADP plays a key role in platelet aggregation which has led to the development of antiplatelet drugs that target the P2Y12 receptor. The aim of this study was to characterize the effects of two novel P2Y12 receptor antagonists, BX 667 and its active metabolite BX 048, on platelets. BX 667 and BX 048 block the binding of 2MeSADP to platelets and antagonize ADP-induced platelet aggregation in human, dog and rat washed platelets. Both compounds were shown to be reversible inhibitors of platelet aggregation. BX 048 prevents the decrease in cAMP induced by treatment of platelets with ADP. The specificity of BX 667 and BX 048 was demonstrated against cell lines expressing P2Y1 and P2Y6 as well as against a panel of receptors and enzymes. Taken all together these data show that both BX 048 and BX 667 are potent P2Y12 antagonists with high specificity which, in the accompanying paper are demonstrated to behave predictably in vivo.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/metabolism , Keto Acids/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Purinergic P2 Receptor Antagonists , Quinolines/pharmacology , Receptors, Purinergic P2/metabolism , Adenosine Diphosphate/chemistry , Animals , Calcium/metabolism , Dogs , Drug Evaluation, Preclinical , Humans , In Vitro Techniques , Ligands , Models, Biological , Platelet Aggregation/drug effects , Protein Binding , Rats , Receptors, Purinergic P2Y12 , Species Specificity
12.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 2): 149-57, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18219114

ABSTRACT

This article reports the crystal structures of inhibitors of the functional form of thrombin-activatable fibrinolysis inhibitor (TAFIa). In vivo experiments indicate that selective inhibitors of TAFIa would be useful in the treatment of heart attacks. Since TAFIa rapidly degrades in solution, the homologous protein porcine pancreatic carboxypeptidase B (pp-CpB) was used in these crystallography studies. Both TAFIa and pp-CpB are zinc-based exopeptidases that are specific for basic residues. The final development candidate, BX 528, is a potent inhibitor of TAFIa (2 nM) and has almost no measurable effect on the major selectivity target, carboxypeptidase N. BX 528 was designed to mimic the tripeptide Phe-Val-Lys. A sulfonamide replaces the Phe-Val amide bond and a phosphinate connects the Val and Lys groups. The phosphinate also chelates the active-site zinc. The electrostatic interactions with the protein mimic those of the natural substrate. The primary amine in BX 528 forms a salt bridge to Asp255 at the base of the S1' pocket. The carboxylic acid interacts with Arg145 and the sulfonamide is hydrogen bonded to Arg71. Isopropyl and phenyl groups replace the side chains of Val and Phe, respectively. A series of structures are presented here that illustrate the evolution of BX 528 from thiol-based inhibitors that mimic a free C-terminal arginine. The first step in development was the replacement of the thiol with a phosphinate. This caused a precipitous drop in binding affinity. Potency was reclaimed by extending the inhibitors into the downstream binding sites for the natural substrate.


Subject(s)
Carboxypeptidase B/metabolism , Peptides/chemistry , Peptides/metabolism , Binding Sites , Carboxypeptidase B/chemistry , Carboxypeptidase B2/chemistry , Crystallography, X-Ray/methods , Humans , Hydrogen Bonding , Models, Molecular , Molecular Structure
13.
Thromb Haemost ; 97(5): 847-55, 2007 May.
Article in English | MEDLINE | ID: mdl-17479197

ABSTRACT

Irreversible platelet inhibitors, such as aspirin and clopidogrel, have limited anti-thrombotic efficacy in the clinic due to their bleeding risk. We have developed an orally active reversible P2Y(12) receptor antagonist, BX 667. The aim of this study was to determine if the reversible antagonist BX 667 had a greater therapeutic index than the irreversible P2Y(12) receptor antagonist clopidogrel. Since BX 667 is rapidly converted to its active metabolite BX 048 in rats, we first injected BX 048 intravenously (iv) in a rat arterial venous (A-V) shunt model of thrombosis. BX 048 dose- and concentration-dependently attenuated thrombosis. When administered orally, BX 667 and clopidogrel had similar efficacy, but BX 667 caused less bleeding than clopidogrel. In a rat model of a platelet-rich thrombus induced by vessel injury with FeCl(2), both BX 667 and clopidogrel exhibited higher levels of thrombus inhibition after oral administration compared to their potency in the A-V shunt model. Again, BX 667 caused less bleeding than clopidogrel. In a dog cyclic flow model, iv injection of either BX 667 or clopidogrel dose-dependently reduced thrombus formation with lower bleeding for BX 667 than clopidogrel. Inhibition of thrombosis was highly correlated with inhibition of ADP-induced platelet aggregation in these animal models. In dogs pre-treated with aspirin, BX 667 maintained its wider therapeutic index, measured by inhibition of platelet aggregation over bleeding, compared to the aspirin-clopidogrel combination. These data demonstrate that the reversible P2Y(12) receptor antagonist, BX 667, has a wider therapeutic index than clopidogrel in experimental models of thrombosis.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Purinergic P2 Receptor Antagonists , Thrombosis/prevention & control , Animals , Arteriovenous Shunt, Surgical , Carotid Artery Injuries/drug therapy , Clopidogrel , Disease Models, Animal , Dogs , In Vitro Techniques , Male , Molecular Structure , Platelet Aggregation Inhibitors/blood , Platelet Aggregation Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2 , Receptors, Purinergic P2Y12 , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology
14.
Thromb Haemost ; 97(1): 45-53, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17200770

ABSTRACT

We have discovered a novel small-molecule (3-phosphinoylpropionic acid) inhibitor of activated thrombin activatable fibrinolysis inhibitor (TAFIa), BX 528, which had an IC (50) of 2 nM in an enzymatic assay and 50 nM in an in-vitro clot lysis assay, with 3,500- to 35,000-fold selectivity against other carboxypeptidases, such as CPN, CPZ and CPD, and 5- and 12-fold selectivity against CPE (CPH) and CPB, respectively. At 10 micro M, BX 528 had no significant activity (<50% inhibition or antagonism) in a panel of 137 enzymes and receptors. It had no effects on blood coagulation and platelet aggregation up to 300 and 10 micro M, respectively. The plasma half-life following intravenous administration was 0.85 hours in rats and 4.5 hours in dogs. No significant metabolism was detected in human, dog or rabbit hepatic microsomes, and no significant inhibition of cytochrome P450 3A4 and 2D6 up to 30 micro M. No cytotoxic or cell proliferative effects were found in three hepatic and renal cell lines up to 300 micro M and no mutagenic activity was seen in the Ames II screen. There were no significant hemodynamic effects in rats and dogs up to 100 and 30 mg/kg with peak plasma drug concentrations of approximately 1,000 and 300 micro M, respectively. In an in-vivo complement activation model in guinea pigs, BX 528 showed minimal inhibition of plasma CPN activity up to 60 mg/kg with peak plasma concentrations up to 250 micro M. Thus, these data demonstrate that BX 528 is a novel, potent, selective and safe TAFIa inhibitor.


Subject(s)
Carboxypeptidase B2/antagonists & inhibitors , Enzyme Inhibitors/pharmacokinetics , Animals , Blood Coagulation/drug effects , Carboxypeptidases/antagonists & inhibitors , Cell Proliferation/drug effects , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guinea Pigs , Half-Life , Humans , Inhibitory Concentration 50 , Microsomes, Liver/drug effects , Platelet Aggregation/drug effects , Propionates/pharmacokinetics , Propionates/pharmacology , Rabbits , Rats , Substrate Specificity
15.
Thromb Haemost ; 97(1): 54-61, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17200771

ABSTRACT

We have discovered a novel small-molecule TAFIa inhibitor, BX 528, which is potent, highly selective against other carboxypeptidases and safe. The present study was to determine if BX 528 can enhance exogenous and endogenous thrombolysis in four different animal models. In the first three models, a thrombus was induced by FeCl (2) (dogs) or laser (rats) injury of the femoral artery, or formed ex vivo and implanted in the jugular vein in rabbits. A low dose of exogenous t-PA was given to induce a low-level thrombolysis on an established thrombus. Co-treatment with BX 528 further enhanced the thrombolytic effects induced by the exogenous t-PA and, thus, reduced thrombosis in all three animal models. In a second rat model, fibrin deposition in the lungs was induced by batroxobin, which was spontaneously resolved in 30 minutes due to the activation of endogenous fibrinolysis. Pre-treatment with lipopolysaccharide (LPS) attenuated this spontaneous fibrinolysis. Co-treatment with 10 mg/kg BX 528 prevented the LPS-induced attenuation of endogenous fibrinolysis. Thus, these studies demonstrated that inhibition of TAFIa by BX 528, our newly discovered small-molecule TAFIa inhibitor, enhanced both the exogenous (induced by a low dose of t-PA) and endogenous (LPS-induced resistance) thrombolysis without increasing the bleeding risk in four different animal models of thrombosis in different species (rat, dog and rabbit) employing different thrombogenic stimuli (FeCl (2) , laser, ex vivo and batroxobin) to induce thrombus formation in different tissues (artery, vein and lung microcirculation).


Subject(s)
Carboxypeptidase B2/antagonists & inhibitors , Fibrinolysis/drug effects , Fibrinolytic Agents/pharmacology , Thrombosis/drug therapy , Animals , Disease Models, Animal , Dogs , Drug Synergism , Enzyme Inhibitors/pharmacology , Lipopolysaccharides/pharmacology , Propionates/pharmacology , Rabbits , Rats , Tissue Plasminogen Activator/pharmacology
16.
Bioorg Med Chem Lett ; 17(5): 1349-54, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17189688

ABSTRACT

A novel series of cyclic potent, selective, small molecule, thiol-based inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) and the crystal structures of TAFIa inhibitors bound to porcine pancreatic carboxypeptidase B are described. Three series of cyclic arginine and lysine mimetic inhibitors vary significantly in their selectivity against other human basic carboxypeptidases, carboxypeptidase N and carboxypeptidase B. (-)2a displays TAFIa IC50 = 3 nM and 600-fold selectivity against CPN. Inhibition of TAFIa with (rac)2a resulted in dose dependent acceleration of human plasma clot lysis in vitro and was efficacious as an adjunct to tPA in an in vivo rabbit jugular vein thrombolysis model.


Subject(s)
3-Mercaptopropionic Acid/pharmacology , Carboxypeptidase B2/antagonists & inhibitors , Fibrinolytic Agents/chemical synthesis , Animals , Arginine , Carboxypeptidase B/antagonists & inhibitors , Crystallography, X-Ray , Fibrinolytic Agents/pharmacokinetics , Fibrinolytic Agents/pharmacology , Humans , Lysine , Lysine Carboxypeptidase/antagonists & inhibitors , Molecular Mimicry , Peptides, Cyclic , Rabbits , Structure-Activity Relationship , Substrate Specificity , Swine
17.
Biochemistry ; 44(26): 9339-47, 2005 Jul 05.
Article in English | MEDLINE | ID: mdl-15982000

ABSTRACT

This paper presents the crystal structure of porcine pancreatic carboxypeptidase B (pp-CpB) in complex with a variety of thiol-based inhibitors that were developed as antagonists of activated thrombin-activatable fibrinolysis inhibitor (TAFIa). Recent studies have indicated that a selective inhibitor of TAFIa could enhance the efficacy of existing thrombolytic agents for the treatment of acute myocardial infarction, one of the most prevalent forms of heart attacks. Unfortunately, activated TAFIa rapidly degrades in solution and cannot be used for crystallographic studies. In contrast, porcine pancreatic CpB is stable at room temperature and is available from commercial sources. Both pancreatic CpB and TAFIa are zinc-based exopeptidases, and the proteins share a 47% sequence identity. The homology improves considerably in the active site where nearly all of the residues are conserved. The inhibitors used in this study were designed to mimic a C-terminal arginine residue, one of the natural substrates of TAFIa. The X-ray structures show that the thiol group chelates the active site zinc, the carboxylic acid forms a salt bridge to Arg145, and the guanidine group forms two hydrogen bonds to Asp255. A meta-substituted phenyl was introduced into our inhibitors to reduce conformational freedom. This modification vastly improved the selectivity of compounds against other exopeptidases that cleave basic residues. Comparisons between structures indicate that selectivity derives from the interaction between the guanidine group in the inhibitors and an acidic active site residue. The location of this acidic residue is not conserved in the various carboxypeptidases.


Subject(s)
Carboxypeptidase B/antagonists & inhibitors , Protease Inhibitors/chemistry , Sulfhydryl Compounds/chemistry , Animals , Carboxypeptidase B/metabolism , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Pancreas/enzymology , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Conformation , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology , Swine
18.
Bioorg Med Chem Lett ; 15(9): 2249-52, 2005 May 02.
Article in English | MEDLINE | ID: mdl-15837303

ABSTRACT

Reductive amination followed by acylation of polymer-linked formyl aryl amidines generate combinatorial libraries of aryl amidines 8-13. Potent small molecule naphthylamidine inhibitors 12 (Ki<100 nM) of FVIIa/TF have been discovered and their activity against other serine proteases in the coagulation cascade is reported.


Subject(s)
Amidines/chemical synthesis , Factor VIIa/antagonists & inhibitors , Thromboplastin/antagonists & inhibitors , Amidines/chemistry , Amidines/pharmacology , Binding Sites , Humans , Kinetics , Models, Molecular , Molecular Conformation , Naphthols/chemical synthesis , Naphthols/chemistry , Naphthols/pharmacology , Structure-Activity Relationship
19.
J Biol Chem ; 280(20): 19867-74, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15772071

ABSTRACT

The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , 3-Phosphoinositide-Dependent Protein Kinases , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Division/drug effects , Cell Line, Tumor , Drug Evaluation, Preclinical , Female , HeLa Cells , Humans , In Vitro Techniques , Kinetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/secondary , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Pyrimidines/chemistry , Pyrimidines/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
20.
Bioorg Med Chem Lett ; 13(19): 3361-5, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-12951126

ABSTRACT

Compound 1 was identified by high throughput screening as a novel PAI-1 inhibitor. Optimization of the B and C-segments of 1 resulted in a series of structurally simplified compounds with improved potency. The synthesis and SAR data of these compounds are presented here.


Subject(s)
Methanol/chemical synthesis , Methanol/pharmacology , Plasminogen Activator Inhibitor 1/metabolism , Animals , Drug Evaluation, Preclinical/methods , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...