Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 352: 52-63, 2017 06 03.
Article in English | MEDLINE | ID: mdl-28391014

ABSTRACT

Developmental alcohol exposure causes a host of cognitive and neuroanatomical abnormalities, one of which is impaired executive functioning resulting from medial prefrontal cortex (mPFC) damage. This study determined whether third-trimester equivalent alcohol exposure reduced the number of mPFC GABAergic parvalbumin-positive (PV+) interneurons, hypothesized to play an important role in local inhibition of the mPFC. The impact on passive avoidance learning and the therapeutic role of aerobic exercise in adulthood was also explored. Male C57BL/6J mice received either saline or 5g/kg ethanol (two doses, two hours apart) on PD 5, 7, and 9. On PD 35, animals received a running wheel or remained sedentary for 48days before behavioral testing and perfusion on PD 83. The number of PV+ interneurons was stereologically measured in three separate mPFC subregions: infralimbic, prelimbic and anterior cingulate cortices (ACC). Neonatal alcohol exposure decreased number of PV+ interneurons and volume of the ACC, but the other regions of the mPFC were spared. Alcohol impaired acquisition, but not retrieval of passive avoidance, and had no effect on motor performance on the rotarod. Exercise had no impact on PV+ cell number, mPFC volume, or acquisition of passive avoidance, but enhanced retrieval in both control and alcohol-exposed groups, and enhanced rotarod performance in the control mice. Results support the hypothesis that part of the behavioral deficits associated with developmental alcohol exposure are due to reduced PV+ interneurons in the ACC, but unfortunately exercise does not appear to be able to reverse any of these deficits.


Subject(s)
Central Nervous System Depressants/toxicity , Ethanol/toxicity , Interneurons/drug effects , Learning Disabilities , Parvalbumins/metabolism , Physical Conditioning, Animal , Prefrontal Cortex/drug effects , Age Factors , Animals , Animals, Newborn , Avoidance Learning/drug effects , Body Weight/drug effects , Cell Count , Interneurons/metabolism , Learning Disabilities/chemically induced , Learning Disabilities/pathology , Learning Disabilities/rehabilitation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nestin/genetics , Nestin/metabolism , Organ Size/drug effects , Prefrontal Cortex/pathology , Psychomotor Disorders/etiology
2.
Behav Brain Res ; 314: 96-105, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27491590

ABSTRACT

Prenatal alcohol exposure can produce permanent alterations in brain structure and profound behavioral deficits. Mouse models can help discover mechanisms and identify potentially useful interventions. This study examined long-term influences of either a single or repeated alcohol exposure during the third-trimester equivalent on survival of new neurons in the hippocampus, behavioral performance on the Passive avoidance and Rotarod tasks, and the potential role of exercise as a therapeutic intervention. C57BL/6J male mice received either saline or 5g/kg ethanol split into two s.c. injections, two hours apart, on postnatal day (PD)7 (Experiment 1) or on PD5, 7 and 9 (Experiment 2). All mice were weaned on PD21 and received either a running wheel or remained sedentary from PD35-PD80/81. From PD36-45, mice received i.p. injections of 50mg/kg bromodeoxyuridine (BrdU) to label dividing cells. Behavioral testing occurred between PD72-79. Number of surviving BrdU+ cells and immature neurons (doublecortin; DCX+) was measured at PD80-81. Alcohol did not affect number of BrdU+ or DCX+ cells in either experiment. Running significantly increased number of BrdU+ and DCX+ cells in both treatment groups. Alcohol-induced deficits on Rotarod performance and acquisition of the Passive avoidance task (Day 1) were evident only in Experiment 2 and running rescued these deficits. These data suggest neonatal alcohol exposure does not result in long-term impairments in adult hippocampal neurogenesis in the mouse model. Three doses of ethanol were necessary to induce behavioral deficits. Finally, the mechanisms by which exercise ameliorated the neonatal alcohol induced behavioral deficits remain unknown.


Subject(s)
Ethanol/pharmacology , Hippocampus/drug effects , Motor Activity/drug effects , Neurogenesis/drug effects , Animals , Behavior, Animal , Cell Survival/drug effects , Doublecortin Protein , Hippocampus/physiology , Male , Mice, Inbred C57BL , Neurogenesis/physiology , Neurons/drug effects , Physical Conditioning, Animal/physiology
3.
Brain Plast ; 1(1): 83-95, 2015.
Article in English | MEDLINE | ID: mdl-28989863

ABSTRACT

New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and "hybrid vigor"). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice (n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice (n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior.

4.
Eur J Neurosci ; 41(2): 216-26, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25393660

ABSTRACT

Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice.


Subject(s)
Cocaine/pharmacology , Dentate Gyrus/physiology , Dopamine Uptake Inhibitors/pharmacology , Drug-Seeking Behavior/physiology , Extinction, Psychological/physiology , Running/physiology , Animal Feed , Animals , Apoptosis/drug effects , Body Weight , Bromodeoxyuridine , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Dentate Gyrus/drug effects , Ganciclovir/administration & dosage , Ganciclovir/analogs & derivatives , Immunohistochemistry , Male , Mice, Inbred C57BL , Mice, Transgenic , Mitosis Modulators/administration & dosage , Neurogenesis/drug effects , Neurogenesis/physiology , Spatial Learning/drug effects , Spatial Learning/physiology , Valganciclovir
SELECTION OF CITATIONS
SEARCH DETAIL
...