Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci Biotechnol ; 12(1): 62, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33827684

ABSTRACT

BACKGROUND: We aimed to characterize the protective effects and the molecular mechanisms of action of a Saccharomyces cerevisiae fermentation product (NTK) in response to a mastitis challenge. Eighteen mid-lactation multiparous Holstein cows (n = 9/group) were fed the control diet (CON) or CON supplemented with 19 g/d NTK for 45 d (phase 1, P1) and then infected in the right rear quarter with 2500 CFU of Streptococcus uberis (phase 2, P2). After 36-h, mammary gland and liver biopsies were collected and antibiotic treatment started until the end of P2 (9 d post challenge). Cows were then followed until day 75 (phase 3, P3). Milk yield (MY) and dry matter intake (DMI) were recorded daily. Milk samples for somatic cell score were collected, and rectal and udder temperature, heart and respiration rate were recorded during the challenge period (P2) together with blood samples for metabolite and immune function analyses. Data were analyzed by phase using the PROC MIXED procedure in SAS. Biopsies were used for transcriptomic analysis via RNA-sequencing, followed by pathway analysis. RESULTS: DMI and MY were not affected by diet in P1, but an interaction with time was recorded in P2 indicating a better recovery from the challenge in NTK compared with CON. NTK reduced rectal temperature, somatic cell score, and temperature of the infected quarter during the challenge. Transcriptome data supported these findings, as NTK supplementation upregulated mammary genes related to immune cell antibacterial function (e.g., CATHL4, NOS2), epithelial tissue protection (e.g. IL17C), and anti-inflammatory activity (e.g., ATF3, BAG3, IER3, G-CSF, GRO1, ZFAND2A). Pathway analysis indicated upregulation of tumor necrosis factor α, heat shock protein response, and p21 related pathways in the response to mastitis in NTK cows. Other pathways for detoxification and cytoprotection functions along with the tight junction pathway were also upregulated in NTK-fed cows. CONCLUSIONS: Overall, results highlighted molecular networks involved in the protective effect of NTK prophylactic supplementation on udder health during a subclinical mastitic event.

2.
J Dairy Sci ; 104(3): 3403-3417, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33455750

ABSTRACT

We investigated how prepartal body condition score (BCS) alters key hepatic enzymes associated with 1-carbon, carnitine, and glutathione metabolism and the related biomarkers in liver tissue and plasma of periparturient dairy cows. Twenty-six multiparous Holstein dairy cows were retrospectively selected according to BCS at 4 wk prepartum and divided into high (HighBCS, BCS ≥ 3.50) and normal (NormBCS, BCS ≤ 3.25) BCS groups (n = 13 each). Blood plasma samples were obtained at -30, -10, 7, 15, and 30 d relative to calving. Liver tissue biopsies were performed at -15, 7, and 30 d relative to calving, and samples were used to assess protein abundance via Western blot assay. Cows in the HighBCS group lost ∼1 unit of BCS between -4 and 4 wk around calving, while NormBCS cows lost ∼0.5 unit in the same period. Prepartal dry matter intake (DMI, kg/d) did not differ between groups. Compared with NormBCS cows, HighBCS cows had higher postpartal DMI and milk yield (+5.34 kg/d). In addition, greater overall plasma concentrations of fatty acids and activity of the neutrophil-enriched enzyme myeloperoxidase were observed in HighBCS compared with NormBCS cows. Despite similar reactive oxygen metabolite concentrations in both groups at 30 d, HighBCS cows had lower overall concentrations of ß-carotene and tocopherol, explaining the lower (BCS × Time) antioxidant capacity (ferric reducing ability of plasma). The HighBCS cows also had greater liver malondialdehyde concentrations and superoxide dismutase activity at 30 d. Overall, compared with NormBCS cows, HighBCS cows had lower hepatic protein abundance of the 1-carbon metabolism enzymes cystathionine-ß-synthase, betaine-homocysteine methyltransferase, and methionine adenosyltransferase 1 A (MAT1A), as well as the glutathione metabolism-related enzymes glutathione S-transferase α 4 and glutathione peroxidase 3 (GPX3). A lower protein abundance of glutathione S-transferase mu 1 (GSTM1) at -15 and 7 d was also observed. Regardless of BCS, cows had increased abundance of GSTM1 and GPX3 between -15 and 7 d around calving. A marked decrease of gamma-butyrobetaine dioxygenase 1 from -10 to 7 d in HighBCS compared with NormBCS cows suggested a decrease in de novo carnitine synthesis that was partly explained by the lower abundance of MAT1A. Overall, data suggest biologic links between BCS before calving, milk yield, immune response, and hepatic reactions encompassing 1-carbon metabolism, carnitine, and antioxidant synthesis.


Subject(s)
Carbon , Carnitine , Animals , Biomarkers , Cattle , Diet , Female , Glutathione , Lactation , Liver , Milk , Postpartum Period , Retrospective Studies
3.
BMC Genomics ; 19(1): 900, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30537932

ABSTRACT

BACKGROUND: To reduce costs of rearing replacement heifers, researchers have focused on decreasing age at breeding and first calving. To increase returns upon initiation of lactation the focus has been on increasing mammary development prior to onset of first lactation. Enhanced plane of nutrition pre-weaning may benefit the entire replacement heifer operation by promoting mammary gland development and greater future production. METHODS: Twelve Holstein heifer calves (< 1 week old) were reared on 1 of 2 dietary treatments (n = 6/group) for 8 weeks: a control group fed a restricted milk replacer at 0.45 kg/d (R, 20% crude protein, 20% fat), or an accelerated group fed an enhanced milk replacer at 1.13 kg/d (EH, 28% crude protein, 25% fat). At weaning (8 weeks), calves were euthanized and sub-samples of mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested upon removal from the body. Total RNA from both tissues was extracted and sequenced using the Illumina HiSeq2500 platform. The Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA) were used for pathway analysis and functions, gene networks, and cross-talk analyses of the two tissues. RESULTS: When comparing EH vs R 1561 genes (895 upregulated, 666 downregulated) and 970 genes (506 upregulated, 464 downregulated) were differentially expressed in PAR and MFP, respectively. DIA and IPA results highlight a greater proliferation and differentiation activity in both PAR and MFP, supported by an increased metabolic activity. When calves were fed EH, the PAR displayed transcriptional signs of greater overall organ development, with higher ductal growth and branching, together with a supportive blood vessel and nerve network. These activities were mediated by intracellular cascades, such as AKT, SHH, MAPK, and Wnt, probably activated by hormones, growth factors, and endogenous molecules. The analysis also revealed strong communication between MFP and PAR. CONCLUSION: The transcriptomics and bioinformatics approach highlighted key mechanisms that mediate the mammary gland response to a higher plane of nutrition in the pre-weaning period.


Subject(s)
Adipose Tissue/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Nutritional Status/genetics , Transcriptome/genetics , Weaning , Animals , Cattle , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...