Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1717: 464657, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38280360

ABSTRACT

The impact of naturally occurring 3-deoxy-d-manno­oct-2-ulsonic acid (Kdo) derivatives on endotoxin (ET) quantification was investigated for six ET standards. In our recently published chemical Kdo-DMB-LC ET assay (Bucsella et al., Anal. Methods, 2020, 12,4621) [1], the rare, ET specific sugar acid Kdo is used for ET quantification of S-type ETs. The ET content is calculated based on an external Kdo standard or a representative ET standard. In absence of a specific ET standard, the calculation is based on the reference standard ET (RSE) structure or on a worst-case scenario. This scenario overestimates the total ET content of typical S-type ET preparations by a factor of four. Mainly R-type ETs contain in addition to Kdo also Kdo-s non-stoichiometrically modified with phosphoethanolamine (PEtN), galactose (Gal) or L­glycero-d-manno-heptose (Hep) in substantial quantities. These Kdo species are separated from the unmodified Kdo. All Kdo and Kdo species follow an exponential hydrolytic release from the ET core in dependence on the hydrolysis time. Hydrolysis kinetics for identical Kdo species are the same for all ET standards. Kdo-Gal was released fastest followed by unsubstituted Kdo, Kdo-PEtN, and Kdo-Hep. Between 90 and 150 min a plateau of maximum content is obtained for all Kdo-s. That allows in case of a representative ET standard, ET quantification based on the most present Kdo derivative, here mainly unsubstituted Kdo. If no representative ET standard is available Kdo and all Kdo species must be considered for ET quantification. With that the Kdo-DMB-LC assay is applicable for R- and S-type ETs.


Subject(s)
Endotoxins , Lipopolysaccharides , Chromatography, High Pressure Liquid
2.
Anal Methods ; 12(38): 4621-4634, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32924034

ABSTRACT

The paper presents a novel instrumental analytical endotoxin quantification assay. It uses common analytical laboratory equipment (HPLC-FLD) and allows quantifying endotoxins (ETs) in different matrices from about 109 EU per mL down to about 40 EU per mL (RSE based). Test results are obtained in concentration units (e.g. ng ET per mL), which can then be converted to commonly used endotoxin units (EU per mL) in case of known pyrogenic activity. During endotoxin hydrolysis, the endotoxin specific rare sugar acid KDO is obtained quantitatively. After that, KDO is stoichiometrically reacted with DMB, which results in a highly fluorescent derivative. The mixture is separated using RP-HPLC followed by KDO-DMB quantification with a fluorescence detector. Based on the KDO content, the endotoxin content in the sample is calculated. The developed assay is economic and has a small error. Its applicability was demonstrated in applied research. ETs were quantified in purified bacterial biopolymers, which were produced by Gram-negative bacteria. Results were compared to LAL results obtained for the same samples. A high correlation was found between the results of both methods. Further, the new assay was utilized with high success during the development of novel endotoxin specific depth filters, which allow efficient, economic and sustainable ET removal during DSP. Those examples demonstrate that the new assay has the potential to complement the animal-based biological LAL pyrogenic quantification tests, which are accepted today by the major health authorities worldwide for the release of commercial pharmaceutical products.


Subject(s)
Endotoxins , Gram-Negative Bacteria , Animals , Bacteria , Biological Assay , Chromatography, High Pressure Liquid , Endotoxins/analysis
3.
J Biotechnol ; 252: 32-42, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28465212

ABSTRACT

Glycosylation plays a pivotal role in pharmacokinetics and protein physiochemical characteristics. In particular, effector functions including antibody-dependent cell-mediated cytotoxicity (ADCC) can be desired, and it has been described that high-mannose species exhibited enhanced ADCC. In this work we present the trisaccharide raffinose as a novel cell culture medium supplement to promote high mannose N-glycans in fed-batch cultures, which is sought after in the development of biosimilars to match the quality profile of the reference medicinal product (RMP) also. Up to six-fold increases of high mannose species were observed with increasing raffinose concentrations in the medium of shaken 96-deepwell plates and shake tubes when culturing two different CHO cell lines in two different media. The findings were confirmed in a pH-, oxygen- and CO2-controlled environment in lab-scale 3.5-L bioreactors. To circumvent detrimental effects on cell growth and productivity at high raffinose concentrations, the media osmolality was adjusted to reach the same value independently of the supplement concentration. Interestingly, raffinose predominantly enhanced mannose 5 glycans, and to a considerably smaller degree, mannose 6. While the underlying mechanism is still not fully understood, minor effects on the nucleotide sugar levels have been observed and transcriptomics analysis revealed that raffinose supplementation altered the expression levels of a number of glycosylation related genes. Among many genes, galactosyltransferase was downregulated and sialyltransferase upregulated. Our results highlight the potential of cell culture medium supplementation to modulate product quality.


Subject(s)
Bioreactors , Mannose/metabolism , Polysaccharides/metabolism , Raffinose/pharmacology , Animals , CHO Cells , Cricetulus , Culture Media , Glycosylation , Nucleotides/metabolism
4.
Food Chem ; 220: 9-17, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27855940

ABSTRACT

Novel aleurone-rich wheat milling fraction developed and produced on industry scale is investigated. The special composition of the novel flour with high protein, dietary fiber and fat content results in a unique combination of the mixing and viscosity properties. Due to the high lipid concentration, the fraction is exposed to fast rancidity. Dry heat (100°C for 12min) and hydrothermal treatment processes (96°C for 6min with 0-20 L/h steam) were applied on the aleurone-rich flour to modify the technological properties. The chemical, structural changes; the extractability of protein, carbohydrate and phenolic components and the rheological characteristics of the flours were evaluated. The dry treated flour decreased protein and carbohydrate extractability, shortened dough development time, reduced gel strength and enhanced the gelling ability. Hydrothermal treatment caused changes in the phenolic content improved the dough stability and -resistance. Heat treatment processes were able to extend the stability of the flour.


Subject(s)
Dietary Fiber/analysis , Flour/analysis , Triticum , Carbohydrates , Hot Temperature , Phenols , Proteins , Rheology , Viscosity
5.
Chimia (Aarau) ; 70(10): 732-735, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27779934

ABSTRACT

In biotechnological processes the intracellular level of nucleotides and nucleotide sugars have a direct impact on the post-translational modification (glycosylation) of the therapeutic protein products and on the exopolysaccharide pattern of the cells. Thus, they are precursors and also key components in the production of glycoproteins and glycolipids. All four nucleotides (at different phosphorylation stages) and their natural sugar derivatives coexist in biological samples. Their relative ratios depend on the actual conditions under which the cells are grown. Therefore, their simultaneous determination at different time points and different cell culture conditions in biotechnological samples is of interest in order to develop the optimal cell culture process. In our study capillary electrophoresis (CE) combined with UV detection @ 260 nm was selected for the separation and quantification of the complex nucleotide mixture of the structurally very similar nucleotides and nucleotide sugars in cell extracts. The high separation efficiency of CE as well as its insensitivity to the complex cell matrix makes this method superior to commonly used HPLC methods. In our study eleven nucleotides and six nucleotide sugars were analyzed. A robust and reproducible analysis system was developed. As background electrolyte borate (40 mM, pH 9.5) was used containing 1% PEG (MW 35'000 Da) which enhanced resolution. In order to obtain high reproducibility in terms of migration time, mandatory for the unambiguous identification of the single compounds in the complex cell extract mixtures, dynamic coating was also employed. The method was tested for CHO cell extracts where three sugar nucleotides and seven nucleotides were identified and quantified using GDP-Glc as internal standard.


Subject(s)
Carbohydrates/analysis , Cell Extracts/analysis , Electrophoresis, Capillary/methods , Nucleotides/analysis , Animals , CHO Cells , Cricetinae , Cricetulus , Reproducibility of Results
6.
Food Chem ; 190: 990-996, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26213066

ABSTRACT

Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties.


Subject(s)
Bread/analysis , Flour/analysis , Triticum/chemistry , Hot Temperature , Rheology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...