Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 8(2): 739-747, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36787432

ABSTRACT

Wearable, mobile, and point-of-care (POC) sensors comprise a rapidly expanding field of devices aimed at improving human health by relaying real-time biometric data such as heart rate and glucose levels. The current scope of what these devices can offer healthcare is limited by their inability to measure biomarkers associated with inflammation, well-being, and disease. Photonic biosensors that integrate sensing elements directly with spectrometers, lasers, and detectors are an attractive approach to enabling POC sensors, with distinct advantages in terms of size, weight, power consumption, and cost. Here, we have demonstrated for the first time the integration of photonic microring resonator biosensors with an on-chip microring filter bank spectrometer for the controlled detection of inflammatory biomarker C-reactive protein (CRP) in serum. We demonstrate that sensor and spectrometer performance is tolerant of temperature variation, as temperature dependence moves in parallel. Finally, we assess the impact of manufacturing variability on the 300 mm wafer scale on the performance of the spectrometer. Taken together, these results suggest that integration of on-chip ring filter bank spectrometers with ring resonator-based biosensors constitutes an attractive approach toward cost-effective integrated sensor development.


Subject(s)
Optics and Photonics , Refractometry , Humans , Silicon Compounds , Photons , Biomarkers
2.
Biosens Bioelectron ; 169: 112643, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33007615

ABSTRACT

Detection of antibodies to upper respiratory pathogens is critical to surveillance, assessment of the immune status of individuals, vaccine development, and basic biology. The urgent need for antibody detection tools has proven particularly acute in the COVID-19 era. We report a multiplex label-free antigen microarray on the Arrayed Imaging Reflectometry (AIR) platform for detection of antibodies to SARS-CoV-2, SARS-CoV-1, MERS, three circulating coronavirus strains (HKU1, 229E, OC43) and three strains of influenza. We find that the array is readily able to distinguish uninfected from convalescent COVID-19 subjects, and provides quantitative information about total Ig, as well as IgG- and IgM-specific responses.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/blood , Coronavirus/isolation & purification , Influenza A virus/isolation & purification , Influenza, Human/blood , Pneumonia, Viral/blood , Betacoronavirus/isolation & purification , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Equipment Design , HEK293 Cells , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2 , Sensitivity and Specificity
3.
Anal Chem ; 90(15): 9583-9590, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29985597

ABSTRACT

Rapid changes in influenza A virus (IAV) antigenicity create challenges in surveillance, disease diagnosis, and vaccine development. Further, serological methods for studying antigenic properties of influenza viruses often rely on animal models and therefore may not fully reflect the dynamics of human immunity. We hypothesized that arrays of human monoclonal antibodies (hmAbs) to influenza could be employed in a pattern-recognition approach to expedite IAV serology and to study the antigenic evolution of newly emerging viruses. Using the multiplex, label-free Arrayed Imaging Reflectometry (AIR) platform, we have demonstrated that such arrays readily discriminated among various subtypes of IAVs, including H1, H3 seasonal strains, and avian-sourced human H7 viruses. Array responses also allowed the first determination of antigenic relationships among IAV strains directly from hmAb responses. Finally, correlation analysis of antibody binding to all tested IAV subtypes allowed efficient identification of broadly reactive clones. In addition to specific applications in the context of understanding influenza biology with potential utility in "universal" flu vaccine development, these studies validate AIR as a platform technology for studying antigenic properties of viruses and also antibody properties in a high-throughput manner. We further anticipate that this approach will facilitate advances in the study of other viral pathogens.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , Influenza A virus/classification , Influenza, Human/virology , Protein Array Analysis/instrumentation , Serotyping/instrumentation , Antibodies, Immobilized/chemistry , Humans , Influenza, Human/diagnosis
4.
J Immunol Methods ; 459: 44-49, 2018 08.
Article in English | MEDLINE | ID: mdl-29802878

ABSTRACT

Multiplex assays for autoantibodies have shown utility both in research towards understanding the basic biology of autoimmune disease, and as tools for clinical diagnosis. New label-free multiplex analysis methods have the potential to streamline both the process of assay development and assay workflow. We report fabrication and testing of a 5-plex autoantigen microarray using the Arrayed Imaging Reflectometry (AIR) platform. This label-free technology provides rapid, sensitive, and quantitative detection of an arbitrary number of analytes in a standard multiwell format. In this work, we demonstrate that AIR is able to detect antibodies to Ro60, La/SSB, Scl-70, BicD2, and Ro52 in single-donor human serum samples with multiplex results comparable to singleplex ELISA or Luminex assays.


Subject(s)
Autoantibodies/blood , Autoantigens/immunology , Autoimmune Diseases/diagnosis , Biosensing Techniques/methods , Protein Array Analysis/methods , Autoantigens/blood , Autoimmune Diseases/blood , Biosensing Techniques/instrumentation , Enzyme-Linked Immunosorbent Assay , Humans , Photometry/instrumentation , Protein Array Analysis/instrumentation
5.
PLoS One ; 10(8): e0134484, 2015.
Article in English | MEDLINE | ID: mdl-26241048

ABSTRACT

Influenza serology has traditionally relied on techniques such as hemagglutination inhibition, microneutralization, and ELISA. These assays are complex, challenging to implement in a format allowing detection of several types of antibody-analyte interactions at once (multiplex), and troublesome to implement in the field. As an alternative, we have developed a hemagglutinin microarray on the Arrayed Imaging Reflectometry (AIR) platform. AIR provides sensitive, rapid, and label-free multiplex detection of targets in complex analyte samples such as serum. In preliminary work, we demonstrated the application of this array to the testing of human samples from a vaccine trial. Here, we report the application of an expanded label-free hemagglutinin microarray to the analysis of avian serum samples. Samples from influenza virus challenge experiments in mallards yielded strong, selective detection of antibodies to the challenge antigen in most cases. Samples acquired in the field from mallards were also analyzed, and compared with viral hemagglutinin inhibition and microneutralization assays. We find that the AIR hemagglutinin microarray can provide a simple and robust alternative to standard methods, offering substantially greater information density from a simple workflow.


Subject(s)
Ducks/virology , Epidemiological Monitoring/veterinary , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza in Birds/epidemiology , Animals , Antibodies, Viral/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay/methods , Hemagglutination Inhibition Tests , Influenza in Birds/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...