Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(33)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34102617

ABSTRACT

In this report we present a systematic study of the magnonic modes in the disordered Fe0.5Co0.5alloy based on the Heisenberg Hamiltonian using two complementary approaches. In order to account for substitutional disorder, on the one hand we directly average the transverse magnetic susceptibility in real space over different disorder configurations and on the other hand we use the coherent potential approximation (CPA). While the method of direct averaging is numerically exact, it is computationally expensive and limited by the maximal size of the supercell which can be simulated on a computer. On the contrary the CPA does not suffer from this drawback and yields a cheap numerical scheme. Therefore, we additionally compare the results of these two approaches and show that the CPA gives very good results for most of the magnetic properties considered in this report, including the magnon energies and the spatial shape of the eigenmodes. However, it turns out that while reproducing the general trend, the CPA systematically underestimates the disorder induced damping of the magnons. This provides evidence that the physics of impurity scattering in this system is governed by non-local effects missing in the CPA. Finally, we study the real space eigenmodes of the system, including their spatial shapes, and analyze their temperature dependence within the random phase approximation.

2.
Phys Rev Lett ; 125(22): 227201, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33315433

ABSTRACT

The physical mechanism of the plasmonic skyrmion lattice formation in a magnetic layer deposited on a metallic substrate is studied theoretically. The optical lattice is the essence of the standing interference pattern of the surface plasmon polaritons created through coherent or incoherent laser sources. The nodal points of the interference pattern play the role of lattice sites where skyrmions are confined. The confinement appears as a result of the magnetoelectric effect and the electric field associated with the plasmon waves. The proposed model is applicable to yttrium iron garnet and single-phase multiferroics and combines plasmonics and skyrmionics.

SELECTION OF CITATIONS
SEARCH DETAIL
...