Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Ambio ; 47(Suppl 1): 3-19, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29159449

ABSTRACT

This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.


Subject(s)
Agriculture , Animal Husbandry , Ecosystem , Animals , Fertilizers , Germany , Phosphorus
2.
Ambio ; 47(Suppl 1): 50-61, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29159451

ABSTRACT

Phosphorus (P) fertilizer recommendations in most European countries are based on plant-available soil P contents and long-term field experiments. Site-specific conditions are often neglected, resulting in excessive P fertilizer applications. P fertilization experiments including relevant site and soil parameters were evaluated in order to analyze the yield response. The database comprises about 2000 datasets from 30 field experiments from Germany and Austria. Statistical evaluations using a classification and regression tree approach, and multiple linear regression analysis indicate that besides plant-available soil P content, soil texture and soil organic matter content have a large influence on the effectiveness of P fertilization. This study methodology can be a basis for modification and specification of existing P fertilization recommendations and thus contribute to mitigate environmental impacts of P fertilization.


Subject(s)
Fertilizers , Phosphorus , Soil/chemistry , Austria , Europe , Germany , Nitrogen
3.
Sci Total Environ ; 550: 337-348, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26824269

ABSTRACT

Coastal wetlands link terrestrial with marine ecosystems and are influenced from both land and sea. Therefore, they are ecotones with strong biogeochemical gradients. We analyzed sediment characteristics including macronutrients (C, N, P, K, Mg, Ca, S) and heavy metals (Mn, Fe, Cu, Zn, Al, Co, Cr, Ni) of two coastal wetlands dominated by Phragmites australis at the Darss-Zingst Bodden Chain, a lagoon system at the Southern Baltic Sea, to identify the impact of adjacent land use and to distinguish between influences from land or sea. In the wetland directly adjacent to cropland (study site Dabitz) heavy metal concentrations were significantly elevated. Fertilizer application led to heavy metal accumulation in the sediments of the adjacent wetland zones. In contrast, at the other study site (Michaelsdorf), where the hinterland has been used as pasture, heavy metal concentrations were low. While the amount of macronutrients was also influenced by vegetation characteristics (e.g. carbon) or water chemistry (e.g. sulfate), the accumulation of heavy metals is regarded as purely anthropogenic influence. A principal component analysis (PCA) based on the sediment data showed that the wetland fringes of the two study sites are not distinguishable, neither in their macronutrient status nor in their concentrations of heavy metals, whereas the interior zones exhibit large differences in terms of heavy metal concentrations. This suggests that seaside influences are minor compared to influences from land. Altogether, heavy metal concentrations were still below national precautionary and action values. However, if we regard the macronutrient and heavy metal concentrations in the wetland fringes as the natural background values, an accumulation of trace elements from agricultural production in the hinterland is apparent. Thus, coastal wetlands bordering croplands may function as effective pollutant buffers today, but the future development has to be monitored closely to avoid breakthroughs due to exceeded carrying capacities.

4.
Environ Monit Assess ; 184(7): 4517-38, 2012 Jul.
Article in English | MEDLINE | ID: mdl-21833733

ABSTRACT

Assessment of trace element contents in soils is required in Germany (and other countries) before sewage sludge application on arable soils. The reliability of measured element contents is affected by measurement uncertainty, which consists of components due to (1) sampling, (2) laboratory repeatability (intra-lab) and (3) reproducibility (between-lab). A complete characterization of average trace element contents in field soils should encompass the uncertainty of all these components. The objectives of this study were to elucidate the magnitude and relative proportions of uncertainty components for the metals As, B, Cd, Co, Cr, Mo, Ni, Pb, Tl and Zn in three arable fields of different field-scale heterogeneity, based on a collaborative trial (CT) (standardized procedure) and two sampling proficiency tests (PT) (individual sampling procedure). To obtain reference values and estimates of field-scale heterogeneity, a detailed reference sampling was conducted. Components of uncertainty (sampling person, sampling repetition, laboratory) were estimated by variance component analysis, whereas reproducibility uncertainty was estimated using results from numerous laboratory proficiency tests. Sampling uncertainty in general increased with field-scale heterogeneity; however, total uncertainty was mostly dominated by (total) laboratory uncertainty. Reproducibility analytical uncertainty was on average by a factor of about 3 higher than repeatability uncertainty. Therefore, analysis within one single laboratory and, for heterogeneous fields, a reduction of sampling uncertainty (for instance by larger numbers of sample increments and/or a denser coverage of the field area) would be most effective to reduce total uncertainty. On the other hand, when only intra-laboratory analytical uncertainty was considered, total sampling uncertainty on average prevailed over analytical uncertainty by a factor of 2. Both sampling and laboratory repeatability uncertainty were highly variable depending not only on the analyte but also on the field and the sampling trial. Comparison of PT with CT sampling suggests that standardization of sampling protocols reduces sampling uncertainty, especially for fields of low heterogeneity.


Subject(s)
Environmental Pollution/statistics & numerical data , Soil Pollutants/analysis , Soil/chemistry , Trace Elements/analysis , Environmental Monitoring , Germany , Metals, Heavy/analysis , Reference Values , Sewage/analysis , Soil Pollutants/standards , Trace Elements/standards , Uncertainty , Waste Disposal, Fluid/methods
5.
J Environ Manage ; 91(6): 1305-15, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20202739

ABSTRACT

Diffuse N losses from agriculture are a major cause of excessive nitrate concentrations in surface and groundwaters. Leaching through the soil is the main pathway of nitrate loss. For environmental management, an anticipatory assessment and monitoring of nitrate leaching risk by indicator (index) approaches is increasingly being used. Although complex Nitrogen Loss Indicator (NLI) approaches may provide more information, relatively simple NLIs may have advantages in many practical situations, for instance, when data availability is restricted. In this study, we tested four simple NLIs to assess their predictive properties: 1. N balance (Nbal); 2. Exchange frequency of soil solution (EF); 3. Potential nitrate concentration in leachate (PNCL); 4. A composite NLI (balance exchange frequency product, BEP). Field data of nitrate leaching from two sites in northeast Germany along with published data from several sites in Germany, Scotland and the USA were utilized. Nbal proved to be a relatively poor indicator of Nloss for the time frame of one year, whereas its prediction accuracy improved for longterm-averaged data. Correlation between calculated EF and experimental data was high for single-year data, whereas it was lower for longterm-averaged data. PNCL gave no significant correlations with measured data and high deviations. The results for BEP were intermediate between those for Nbal and EF. The results suggest that the use of EF is appropriate for assessing N leaching loss for single-year data and specific sites with comparable N input and management practices, whereas for longterm-averaged data, Nbal is better suited. BEP is an appropriate NLI both for single year and longterm data which accounts for source and transport factors and thus is more flexible than source-based Nbal and transport-based EF. However, such simplified NLIs have limitations: 1. The N cycle is not covered completely; 2. Processes in the vadose zone and the aquifer are neglected, 3. Assessment of management factors is restricted.


Subject(s)
Agriculture , Nitrates/analysis
6.
Environ Manage ; 45(5): 1201-22, 2010 May.
Article in English | MEDLINE | ID: mdl-20306042

ABSTRACT

Diffuse Nitrogen (N) loss from agriculture is a major factor contributing to increased concentrations of nitrate in surface and groundwater, and of N(2)O and NH(3) in the atmosphere. Different approaches to assess diffuse N losses from agriculture have been proposed, among other direct measurements of N loads in leachate and groundwater, and physically-based modelling. However, both these approaches have serious drawbacks and are awkward to use at a routine base. N loss indicators (NLIs) are environmental management tools for assessing the risk of diffuse N losses from agricultural fields. They range in complexity from simple proxy variables to elaborate systems of algebraic equations. Here we present an overview of NLIs developed in different parts of the world. NLIs can be categorized into source-based, transport-based, and composite approaches. Several issues demand more attention in future studies. (1) Is incorporation of leaching losses and gaseous losses into one single NLI warranted? (2) Is it sufficient to restrict the focus on the rooted soil zone without considering the vadose zone and aquifer? (3) Calibration and validation of NLIs using field data of N loss seems not sufficient. Comparisons of several different NLIs with each other needs more attention; however, the different scaling of NLIs impedes comparability. (4) Sensitivity of input parameters with regard to the final NLI output needs more attention in future studies. (5) For environmental management purposes, factors addressing management decision by farmers deserve more attention.


Subject(s)
Agriculture , Environmental Monitoring/methods , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Agriculture/standards , Models, Theoretical , Multivariate Analysis , Risk Assessment , Seasons , Soil/analysis , Weather
7.
J Contam Hydrol ; 88(3-4): 249-68, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-16905222

ABSTRACT

Water repellency can induce preferential flow and thus affect water flow and contaminant transport at hazardous waste sites. Since the spatial patterns of water repellency are mostly unknown, it is problematic to use numerical transport models to predict leachate composition. In this study, the spatial variability of soil water repellency was studied at an industrial site contaminated with tar oil, chromium, copper and arsenic. The persistence of water repellency was assessed by the water drop penetration time (WDPT), and the degree of water repellency was quantified by the ethanol percentage (EP) test. Measurements were made at the soil surface along 3.5-12.1 m long transects at different times between March and October 2002. The spatial variability of WDPT, EP, water content, and organic matter content was quantified by variogram analyses. Both the persistence and the degree of water repellency varied seasonally, with the highest water repellency during the summer months. The correlation lengths of WDPT values ranged between 16 and 406 cm, whereas EP values showed no spatial correlation. For field-moist samples, a critical soil water threshold, below which water repellency prevails, was estimated to be 2.5-4%. For oven dry samples, the WDPT values were dependent on the water content prior to drying. The wide range of correlation lengths and the temporal dynamics of spatial repellency patterns suggest that simulations of solute leaching must consider the spatial and temporal variability of soil hydrophobic properties.


Subject(s)
Metals, Heavy/chemistry , Oils/chemistry , Soil Pollutants/chemistry , Soil , Water/chemistry , Arsenic/chemistry , Chromium/chemistry , Copper/chemistry , Humic Substances , Hydrophobic and Hydrophilic Interactions , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL