Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(12): 8618-8629, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38471106

ABSTRACT

Atomically dispersed first-row transition metals embedded in nitrogen-doped carbon materials (M-N-C) show promising performance in catalytic hydrogenation but are less well-studied for reactions with more complex mechanisms, such as hydrogenolysis. Their ability to catalyze selective C-O bond cleavage of oxygenated hydrocarbons such as aryl alcohols and ethers is enhanced with the participation of ligands directly bound to the metal ion as well as longer-range contributions from the support. In this article, we describe how Fe-N-C catalysts with well-defined local structures for the Fe sites catalyze C-O bond hydrogenolysis. The reaction is facilitated by the N-C support. According to spectroscopic analyses, the as-synthesized catalysts contain mostly pentacoordinated FeIII sites, with four in-plane nitrogen donor ligands and one axial hydroxyl ligand. In the presence of 20 bar of H2 at 170-230 °C, the hydroxyl ligand is lost when N4FeIIIOH is reduced to N4FeII, assisted by the H2 chemisorbed on the support. When an alcohol binds to the tetracoordinated FeII sites, homolytic cleavage of the O-H bond is accompanied by reoxidation to FeIII and H atom transfer to the support. The role of the N-C support in catalytic hydrogenolysis is analogous to the behavior of chemically and redox-non-innocent ligands in molecular catalysts based on first-row transition metal ions and enhances the ability of M-N-Cs to achieve the types of multistep activations of strong bonds needed to upgrade renewable and recycled feedstocks.

2.
Article in English | MEDLINE | ID: mdl-38381798

ABSTRACT

Superconducting states onsetting at moderately high temperatures have been observed in epitaxially stabilized RENiO2-based thin films. However, recently, it has also been reported that superconductivity at high temperatures is observed in bulk La3Ni2O7-δ at high pressure, opening further possibilities for study. Here we report the reduction profile of La3Ni2O7 in a stream of 5% H2/Ar gas and the isolation of the metastable intermediate phase La3Ni2O6.45, which is based on Ni2+. Although this reduced phase does not superconduct at ambient or high pressures, it offers insights into the Ni-327 system and encourages future study of nickelates as a function of oxygen content.

3.
Proc Natl Acad Sci U S A ; 120(52): e2310779120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38113259

ABSTRACT

We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain 151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature, TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated with TN is detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to the TN plateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+ to fully Eu3+ at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhances TN, most likely via enhanced hybridization between the Eu 4f states and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state.

4.
Inorg Chem ; 62(30): 11751-11760, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37471624

ABSTRACT

Six new solvent-free, homoleptic paramagnetic tris(alkyl)lanthanides Ln{C(SiHMe2)3}3 (1Ln) and Ln{C(SiHMe2)2Ph}3 (2Ln) (Ln = Gd, Dy, and Er) were synthesized to investigate the magnetic properties of 4f organometallic compounds stabilized by secondary Ln↼H-Si and benzylic interactions. The unit cell of 1Gd contains one independent molecule (Z = 2), while 1Dy and 1Er crystallize with four independent isostructural molecules per unit cell (Z = 16). In all molecules, as in other 1Ln compounds, the three tris(dimethylsilyl)methyl ligands form a trigonal planar LnC3 core, and six secondary interactions involving Ln↼H-Si bonding in Ln{C(SiHMe2)3}3 form above and below the equatorial plane. Two and five crystallographically independent molecules of each 2Ln (2Gd, Z = 8; 2Dy, Z = 20) form with three π-coordinated phenyl groups in addition to either one or two secondary Ln↼H-Si interactions per molecule. The packing of these midseries organolanthanide compounds contrasts the single crystallographically unique molecules in previously reported La{C(SiHMe2)3}3 (1La, Z = 2, Z' = 1) and La{C(SiHMe2)2Ph}3 (2La, Z = 2, Z' = 1/3). 2La doped with 2Dy can adopt the crystallographic structure of 2La, which promotes magnetic properties, namely a higher χmT value at low temperatures as well as stronger magnetic anisotropy. The ac susceptibility data for 10% 2Dy doped into 2La suggests slow relaxation at low temperatures with a relaxation barrier of ∼45 K. The computed saturated magnetization of 1Er (M ≈ 4.5 µB) and 1Dy (M ≈ 6 µB) matches the experimental values, while the computed value for 2Dy better matches the value measured for 2Dy diluted in 2La (M ≈ 5 µB). Gas-phase calculations predict that the ground-state and first excited-state multiplet separations are larger for 1Er than 2Er, while the ordering for dysprosium is 1Dy > 2Dy.

5.
Materials (Basel) ; 16(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36676230

ABSTRACT

The effects of dipole interactions on magnetic nanoparticle magnetization and relaxation dynamics were investigated using five nanoparticle (NP) systems with different surfactants, carrier liquids, size distributions, inter-particle spacing, and NP confinement. Dipole interactions were found to play a crucial role in modifying the blocking temperature behavior of the superparamagnetic nanoparticles, where stronger interactions were found to increase the blocking temperatures. Consequently, the blocking temperature of a densely packed nanoparticle system with stronger dipolar interactions was found to be substantially higher than those of the discrete nanoparticle systems. The frequencies of the dominant relaxation mechanisms were determined by magnetic susceptibility measurements in the frequency range of 100 Hz-7 GHz. The loss mechanisms were identified in terms of Brownian relaxation (1 kHz-10 kHz) and gyromagnetic resonance of Fe3O4 (~1.12 GHz). It was observed that the microwave absorption of the Fe3O4 nanoparticles depend on the local environment surrounding the NPs, as well as the long-range dipole-dipole interactions. These significant findings will be profoundly important in magnetic hyperthermia medical therapeutics and energy applications.

7.
Nature ; 603(7902): 610-615, 2022 03.
Article in English | MEDLINE | ID: mdl-35322253

ABSTRACT

The Fermi surface plays an important role in controlling the electronic, transport and thermodynamic properties of materials. As the Fermi surface consists of closed contours in the momentum space for well-defined energy bands, disconnected sections known as Fermi arcs can be signatures of unusual electronic states, such as a pseudogap1. Another way to obtain Fermi arcs is to break either the time-reversal symmetry2 or the inversion symmetry3 of a three-dimensional Dirac semimetal, which results in formation of pairs of Weyl nodes that have opposite chirality4, and their projections are connected by Fermi arcs at the bulk boundary3,5-12. Here, we present experimental evidence that pairs of hole- and electron-like Fermi arcs emerge below the Neel temperature (TN) in the antiferromagnetic state of cubic NdBi due to a new magnetic splitting effect. The observed magnetic splitting is unusual, as it creates bands of opposing curvature, which change with temperature and follow the antiferromagnetic order parameter. This is different from previous theoretically considered13,14 and experimentally reported cases15,16 of magnetic splitting, such as traditional Zeeman and Rashba, in which the curvature of the bands is preserved. Therefore, our findings demonstrate a type of magnetic band splitting in the presence of a long-range antiferromagnetic order that is not readily explained by existing theoretical ideas.

8.
J Phys Condens Matter ; 34(14)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35038695

ABSTRACT

Closed-topology magnetic domains are usually observed in thin films and in an applied magnetic field. Here we report the observation of rectangular cross-section tubular ferromagnetic domains in thick single crystals of CeAgSb2in zero applied field. Relatively low exchange energy, small net magnetic moment, and anisotropic in-plane crystal electric fields lower the domain wall energy and allow for the formation of the closed-topology patterns. The tubular domain structure irreversibly transforms into a dendritic pattern upon cycling the magnetic field. This transition between closed and open topologies results in a 'topological magnetic hysteresis'- the actual hysteresis in magnetization, not due to the imperfections and pinning, but due to the difference in the pattern morphology. Similar physics was suggested before in pure type-I superconductors and is believed to be a generic feature of other nonlinear single (present case), or two-phase (type-I superconductor) systems where the effects similar to demagnetization (shape-dependent macroscopic variation of properties) lead to pattern formation.

9.
Inorg Chem ; 60(24): 19345-19355, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34889600

ABSTRACT

Canfieldite, Ag8SnS6, is a semiconducting mineral notable for its high ionic conductivity, photosensitivity, and low thermal conductivity. We report the solution growth of large single crystals of Ag8SnS6 of mass up to 1 g from a ternary Ag-Sn-S melt. On cooling from high temperature, Ag8SnS6 undergoes a known cubic (F4̅3m) to orthorhombic (Pna21) phase transition at ≈460 K. By studying the magnetization and thermal expansion between 5-300 K, we discover a second structural transition at ≈120 K. Single crystal X-ray diffraction reveals the low-temperature phase adopts a different orthorhombic structure with space group Pmn21 (a = 7.662 9(5) Å, b = 7.539 6(5) Å, c = 10.630 0(5) Å, Z = 2 at 90 K) that is isostructural to the room-temperature forms of the related Se-based compounds Ag8SnSe6 and Ag8GeSe6. The 120 K transition is first-order and has a large thermal hysteresis. On the basis of the magnetization and thermal expansion data, the room-temperature polymorph can be kinetically arrested into a metastable state by rapidly cooling to temperatures below 40 K. We last compare the room- and low-temperature forms of Ag8SnS6 with its argyrodite analogues, Ag8TQ6 (T = Si, Ge, Sn; Q = S, Se), and identify a trend relating the preferred structures to the unit cell volume, suggesting smaller phase volume favors the Pna21 arrangement. We support this picture by showing that the transition to the Pmn21 phase is avoided in Ge alloyed Ag8Sn1-xGexS6 samples as well as in pure Ag8GeS6.

10.
Cancers (Basel) ; 13(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771438

ABSTRACT

A major challenge in cancer therapy is to achieve high cell targeting specificity for the highest therapeutic efficacy. Two major approaches have been shown to be quite effective, namely, (1) bio-marker mediated cell targeting, and (2) electrical charge driven cell binding. The former utilizes the tumor-specific moieties on nano carrier surfaces for active targeting, while the latter relies on nanoparticles binding onto the cancer cell surfaces due to differences in electrical charge. Cancer cells are known for their hallmark metabolic pattern: high rates of glycolysis that lead to negatively charged cell surfaces. In this study, the nanoparticles of Fe3O4@Cu2-xS were rendered positively charged by conjugating their surfaces with different functional groups for strong electrostatic binding onto the negatively-charged cancer cells. In addition to the positively charged surfaces, the Fe3O4@Cu2-xS nanoparticles were also modified with folic acid (FA) for biomarker-based cell targeting. The dual-targeting approach synergistically utilizes the effectiveness of both charge- and biomarker-based cell binding for enhanced cell targeting. Further, these superparamagnetic Fe3O4@Cu2-xS nanoparticles exhibit much stronger IR absorptions compared to Fe3O4, therefore much more effective in photothermal therapy.

11.
J Am Chem Soc ; 143(11): 4213-4223, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33719436

ABSTRACT

The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a "zip-lock" mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).

12.
Rev Sci Instrum ; 91(9): 095103, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33003820

ABSTRACT

We report measurements of the temperature- and pressure-dependent resistance, R(T, p), of a manganin manometer in a 4He-gas pressure setup from room temperature down to the solidification temperature of 4He (Tsolid ∼ 50 K at 0.8 GPa) for pressures, p, between 0 GPa and ∼0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell (PCC) from 300 K down to 1.8 K and for pressures between 0 GPa and ∼2 GPa. From these data, we infer the temperature and pressure dependence of the pressure coefficient of manganin, α(T, p), defined by the equation Rp = (1 + αp)R0, where R0 and Rp are the resistances of manganin at ambient pressure and finite pressure, respectively. Our results indicate that upon cooling, α first decreases, then goes through a broad minimum at ∼120 K, and increases again toward lower temperatures. In addition, we find that α is almost pressure-independent at T ≳ 60 K up to p ∼ 2 GPa, but shows a pronounced p dependence at T ≲ 60 K. Using this manganin manometer, we demonstrate that p overall decreases with decreasing temperature in the PCC for the full pressure range and that the size of the pressure difference between room temperature and low temperatures (T = 1.8 K), Δp, decreases with increasing pressure. We also compare the pressure values inferred from the manganin manometer with the low-temperature pressure, determined from the superconducting transition temperature of elemental lead (Pb). As a result of these data and analysis, we propose a practical algorithm to infer the evolution of pressure with temperature in a PCC.

13.
Rev Sci Instrum ; 91(2): 023904, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113408

ABSTRACT

Uniaxial stress, as well as hydrostatic pressure are often used to tune material properties in condensed matter physics. Here, we present a setup that allows for the study of the combined effects of quasi-uniaxial stress and hydrostatic pressure. Following earlier designs for measurements under finite stress at ambient pressures [e.g., Chu et al., Science 337, 710 (2012)], the present setup utilizes a piezoelectric actuator to change stress in situ inside the piston-cylinder pressure cell. We show that the actuator can be operated over the full temperature (from 30 K up to 260 K) and pressure range (up to ≈2 GPa), resulting in a clear and measurable quasi-uniaxial strain. To demonstrate functionality, measurements of the elastoresistance (i.e., the change of resistance of a sample as a response to quasi-uniaxial strain) under finite hydrostatic pressure on the iron-based compound BaFe2As2 are presented as a proof-of-principle example and discussed in the framework of electronic nematicity. Overall, this work introduces the combination of in situ tunable quasi-uniaxial stress and large (up to ≈2 GPa) hydrostatic pressure as a powerful combination in the study of novel electronic phases. In addition, it also points toward further technical advancements which can be made in the future.

14.
Proc Natl Acad Sci U S A ; 116(51): 25524-25529, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31792191

ABSTRACT

Strain describes the deformation of a material as a result of applied stress. It has been widely employed to probe transport properties of materials, ranging from semiconductors to correlated materials. In order to understand, and eventually control, transport behavior under strain, it is important to quantify the effects of strain on the electronic bandstructure, carrier density, and mobility. Here, we demonstrate that much information can be obtained by exploring magnetoelastoresistance (MER), which refers to magnetic field-driven changes of the elastoresistance. We use this powerful approach to study the combined effect of strain and magnetic fields on the semimetallic transition metal dichalcogenide [Formula: see text] We discover that WTe2 shows a large and temperature-nonmonotonic elastoresistance, driven by uniaxial stress, that can be tuned by magnetic field. Using first-principle and analytical low-energy model calculations, we provide a semiquantitative understanding of our experimental observations. We show that in [Formula: see text], the strain-induced change of the carrier density dominates the observed elastoresistance. In addition, the change of the mobilities can be directly accessed by using MER. Our analysis also reveals the importance of a heavy-hole band near the Fermi level on the elastoresistance at intermediate temperatures. Systematic understanding of strain effects in single crystals of correlated materials is important for future applications, such as strain tuning of bulk phases and fabrication of devices controlled by strain.

15.
Phys Rev Lett ; 123(16): 167002, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31702365

ABSTRACT

The iron-based superconductor FeSe offers a unique possibility to study the interplay of superconductivity with purely nematic as well magnetic-nematic order by pressure (p) tuning. By measuring specific heat under p up to 2.36 GPa, we study the multiple phases in FeSe using a thermodynamic probe. We conclude that superconductivity is bulk across the entire p range and competes with magnetism. In addition, whenever magnetism is present, fluctuations exist over a wide temperature range above both the bulk superconducting and the magnetic transitions. Whereas the magnetic fluctuations are likely temporal, the superconducting fluctuations may be either temporal or spatial. These observations highlight similarities between FeSe and underdoped cuprate superconductors.

16.
Rev Sci Instrum ; 90(2): 023911, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831698

ABSTRACT

We report on the resistance behavior of bare-chip Cernox thermometers under pressures up to 2 GPa, generated in a piston-cylinder pressure cell. Our results clearly show that Cernox thermometers, frequently used in low-temperature experiments due to their high sensitivity, remain highly sensitive even under applied pressure. We show that these thermometers are therefore ideally suited for measurements of heat capacity under pressure utilizing an ac oscillation technique up to at least 150 K. Our Cernox-based system is very accurate in determining changes in the specific heat as a function of pressure as demonstrated by measurements of the heat capacity on three different test cases: (i) the superconducting transition in elemental Pb (Tc = 7.2 K), (ii) the antiferromagnetic transition in the rare-earth compound GdNiGe3 (TN = 26 K), and (iii) the structural/magnetic transition in the iron-pnictide BaFe2As2 (Ts,N = 130 K). The chosen examples demonstrate the versatility of our technique for measuring the specific heat under the pressure of various condensed-matter systems with very different transition temperatures as well as amounts of removed entropy.

17.
J Phys Condens Matter ; 31(3): 035701, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30539798

ABSTRACT

We present an experimental study of the superconducting properties of NiBi3 as a function of pressure by means of resistivity and magnetization measurements and combine our results with density functional theory calculations of the band structure under pressure. We find a moderate suppression of the critical temperature [Formula: see text] from [Formula: see text] [Formula: see text] K to [Formula: see text] [Formula: see text] K by pressures up to 2 GPa. By taking into account the change of the band structure as a function of pressure, we argue that the decrease in [Formula: see text] is consistent with conventional, electron-phonon-mediated BCS-type superconductivity.

18.
Int J Pharm ; 548(1): 297-304, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29981895

ABSTRACT

Poor aqueous solubility, chemical instability, and indiscriminate cytotoxicity have limited clinical development of camptothecin (CPT) as potent anticancer therapeutic. This research aimed at fabricating thermoresponsive nanocomposites that enhance solubility and stability of CPT in aqueous milieu and enable stimulus-induced drug release using magnetic hyperthermia. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG) (1:1, mol/mol) were immobilized on the surface of superparamagnetic Fe3O4 nanoparticles (SPIONs) via high affinity avidin-biotin interactions. Heating behavior was assessed using the MFG-1000 magnetic field generator. Encapsulation efficiency and drug release were quantified by fluorescence spectroscopy. Anticancer efficacy of medicated nanoparticles was measured in vitro using Jurkat cells. The results revealed that drug incorporation did not significantly alter particle size, zeta potential, magnetization, and heating properties of lipid-coated SPIONs. Drug loading efficiency was 93.2 ±â€¯5.1%. Drug release from medicated nanoparticles was significantly faster at temperatures above the lipid transition temperature, reaching 37.8 ±â€¯2.6% of incorporated payload after 12 min under therapeutically relevant hyperthermia (i.e., 42 °C). Medicated SPIONs induced greater cytotoxicity than CPT in solution suggesting synergistic activity of magnetically-induced hyperthermia and drug-induced apoptosis. These results underline the opportunity for thermoresponsive phospholipid-coated SPIONs to enable clinical development of highly lipophilic and chemically unstable drugs such as CPT for stimulus-induced cancer treatment.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles/administration & dosage , 1,2-Dipalmitoylphosphatidylcholine/administration & dosage , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Cell Survival/drug effects , Drug Liberation , Humans , Jurkat Cells , Magnetite Nanoparticles/chemistry , Neoplasms/therapy , Phosphatidylglycerols/administration & dosage , Phosphatidylglycerols/chemistry
19.
Inorg Chem ; 56(23): 14584-14595, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29160701

ABSTRACT

Previously synthesized only as powders, single crystals of the RE2Ru3Ge5 (RE = La, Ce, Nd, Gd, Tb) series of compounds have now been obtained from molten In. These materials crystallize with the U2Co3Si5-type structure in orthorhombic space group Ibam with lattice parameters a ≈ 10.00-9.77 Å (La-Tb), b ≈ 12.51-12.35 Å, and c ≈ 5.92-5.72 Å. The structure is a three-dimensional framework consisting of RuGe5 and RuGe6 units, as well as Ge-Ge zigzag chains. This structure type and those of the other five (Sc2Fe3Si5, Lu2Co3Si5, Y2Rh3Sn5, Yb2Ir3Ge5, and Yb2Pt3Sn5) to compose the RE2T3X5 phase space are discussed in depth. For the three compounds with RE = Nd, Gd, Tb, multiple magnetic transitions and metamagnetic behavior are observed. Electronic band structure calculations performed on La2Ru3Ge5 indicate that these materials have a negative band gap and are semimetallic in nature.

20.
Nat Commun ; 8(1): 1083, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057914

ABSTRACT

Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. However, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. Here, we report a unique shape memory behavior in CaFe2As2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress-strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonal phase transformation. Our results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr2Si2-structured intermetallic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...