Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(30): e2114119119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867819

ABSTRACT

Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development.


Subject(s)
Encephalitis Virus, Eastern Equine , Viral Envelope Proteins , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cryoelectron Microscopy , Encephalitis Virus, Eastern Equine/chemistry , Hydrogen-Ion Concentration , Protein Conformation , Protein Stability/drug effects , Viral Envelope Proteins/chemistry
2.
Viruses ; 12(12)2020 11 24.
Article in English | MEDLINE | ID: mdl-33255202

ABSTRACT

Zika virus (ZIKV), a mosquito-borne human flavivirus that causes microcephaly and other neurological disorders, has been a recent focus for the development of flavivirus vaccines and therapeutics. We report here a 4.0 Å resolution structure of the mature ZIKV in complex with ADI-30056, a ZIKV-specific human monoclonal antibody (hMAb) isolated from a ZIKV infected donor with a prior dengue virus infection. The structure shows that the hMAb interactions span across the E protein dimers on the virus surface, inhibiting conformational changes required for the formation of infectious fusogenic trimers similar to the hMAb, ZIKV-117. Structure-based functional analysis, and structure and sequence comparisons, identified ZIKV residues essential for neutralization and crucial for the evolution of highly potent E protein crosslinking Abs in ZIKV. Thus, this epitope, ZIKV's "Achilles heel", defined by the contacts between ZIKV and ADI-30056, could be a suitable target for the design of therapeutic antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coinfection , Cross Reactions/immunology , Flavivirus Infections/immunology , Flavivirus/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Amino Acid Sequence , Animals , Chlorocebus aethiops , Dengue/immunology , Dengue Virus/immunology , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Flavivirus Infections/virology , Humans , Imaging, Three-Dimensional , Models, Molecular , Neutralization Tests , Protein Conformation , Vero Cells , Zika Virus/ultrastructure , Zika Virus Infection/virology
3.
Proc Natl Acad Sci U S A ; 117(16): 8890-8899, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32245806

ABSTRACT

Eastern equine encephalitis virus (EEEV), a mosquito-borne icosahedral alphavirus found mainly in North America, causes human and equine neurotropic infections. EEEV neurovirulence is influenced by the interaction of the viral envelope protein E2 with heparan sulfate (HS) proteoglycans from the host's plasma membrane during virus entry. Here, we present a 5.8-Å cryoelectron microscopy (cryo-EM) structure of EEEV complexed with the HS analog heparin. "Peripheral" HS binding sites were found to be associated with the base of each of the E2 glycoproteins that form the 60 quasi-threefold spikes (q3) and the 20 sites associated with the icosahedral threefold axes (i3). In addition, there is one HS site at the vertex of each q3 and i3 spike (the "axial" sites). Both the axial and peripheral sites are surrounded by basic residues, suggesting an electrostatic mechanism for HS binding. These residues are highly conserved among EEEV strains, and therefore a change in these residues might be linked to EEEV neurovirulence.


Subject(s)
Drug Design , Encephalitis Virus, Eastern Equine/ultrastructure , Encephalomyelitis, Equine/drug therapy , Heparan Sulfate Proteoglycans/metabolism , Heparin/ultrastructure , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Binding Sites/drug effects , Cell Line , Chondroitin Sulfates/pharmacology , Cryoelectron Microscopy , Encephalitis Virus, Eastern Equine/metabolism , Encephalomyelitis, Equine/virology , Heparan Sulfate Proteoglycans/analogs & derivatives , Heparin/metabolism , Humans , Mesocricetus , Molecular Structure , Structure-Activity Relationship , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/ultrastructure , Virus Attachment/drug effects
4.
Proc Natl Acad Sci U S A ; 115(52): E12209-E12217, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30530701

ABSTRACT

Enterovirus D68 (EV-D68) belongs to a group of enteroviruses that contain a single positive-sense RNA genome surrounded by an icosahedral capsid. Like common cold viruses, EV-D68 mainly causes respiratory infections and is acid-labile. The molecular mechanism by which the acid-sensitive EV-D68 virions uncoat and deliver their genome into a host cell is unknown. Using cryoelectron microscopy (cryo-EM), we have determined the structures of the full native virion and an uncoating intermediate [the A (altered) particle] of EV-D68 at 2.2- and 2.7-Å resolution, respectively. These structures showed that acid treatment of EV-D68 leads to particle expansion, externalization of the viral protein VP1 N termini from the capsid interior, and formation of pores around the icosahedral twofold axes through which the viral RNA can exit. Moreover, because of the low stability of EV-D68, cryo-EM analyses of a mixed population of particles at neutral pH and following acid treatment demonstrated the involvement of multiple structural intermediates during virus uncoating. Among these, a previously undescribed state, the expanded 1 ("E1") particle, shows a majority of internal regions (e.g., the VP1 N termini) to be ordered as in the full native virion. Thus, the E1 particle acts as an intermediate in the transition from full native virions to A particles. Together, the present work delineates the pathway of EV-D68 uncoating and provides the molecular basis for the acid lability of EV-D68 and of the related common cold viruses.


Subject(s)
Acids/pharmacology , Enterovirus D, Human/physiology , Enterovirus D, Human/ultrastructure , Virus Uncoating/drug effects , Capsid/drug effects , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , Enterovirus D, Human/drug effects , Enterovirus D, Human/genetics , Enterovirus Infections/virology , Humans , Hydrogen-Ion Concentration , Virion/drug effects , Virion/genetics , Virion/physiology , Virion/ultrastructure
5.
Cell Rep ; 25(11): 3136-3147.e5, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30540945

ABSTRACT

Alphaviruses are enveloped pathogens that cause arthritis and encephalitis. Here, we report a 4.4-Å cryoelectron microscopy (cryo-EM) structure of eastern equine encephalitis virus (EEEV), an alphavirus that causes fatal encephalitis in humans. Our analysis provides insights into viral entry into host cells. The envelope protein E2 showed a binding site for the cellular attachment factor heparan sulfate. The presence of a cryptic E2 glycan suggests how EEEV escapes surveillance by lectin-expressing myeloid lineage cells, which are sentinels of the immune system. A mechanism for nucleocapsid core release and disassembly upon viral entry was inferred based on pH changes and capsid dissociation from envelope proteins. The EEEV capsid structure showed a viral RNA genome binding site adjacent to a ribosome binding site for viral genome translation following genome release. Using five Fab-EEEV complexes derived from neutralizing antibodies, our investigation provides insights into EEEV host cell interactions and protective epitopes relevant to vaccine design.


Subject(s)
Antibodies, Viral/immunology , Cryoelectron Microscopy , Encephalitis Virus, Eastern Equine/physiology , Encephalitis Virus, Eastern Equine/ultrastructure , Neutralization Tests , Virus Assembly/physiology , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Binding Sites , Capsid Proteins/chemistry , Capsid Proteins/ultrastructure , Cell Line, Tumor , Glycosylation , Heparitin Sulfate/metabolism , Humans , Integrins/metabolism , Models, Molecular , Protein Multimerization , Static Electricity
6.
Structure ; 26(9): 1169-1177.e3, 2018 09 04.
Article in English | MEDLINE | ID: mdl-29958768

ABSTRACT

Among the several arthropod-borne human flaviviral diseases, the recent outbreak of Zika virus (ZIKV) has caused devastating birth defects and neurological disorders, challenging the world with another major public health concern. We report here the refined structure of the mature ZIKV at a resolution of 3.1 Å as determined by cryo-electron microscopic single-particle reconstruction. The improvement in the resolution, compared with previous enveloped virus structures, was the result of optimized virus preparation methods and data processing techniques. The glycoprotein interactions and surface properties of ZIKV were compared with other mosquito-borne flavivirus structures. The largest structural differences and sequence variations occur at the glycosylation loop associated with receptor binding. Probable drug binding pockets were identified on the viral surface. These results also provide a structural basis for the design of vaccines against ZIKV.


Subject(s)
Flavivirus/chemistry , Zika Virus/chemistry , Zika Virus/ultrastructure , Cryoelectron Microscopy , Drug Design , Flavivirus/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Protein Binding , Single Molecule Imaging/methods , Structure-Activity Relationship , Viral Structures/chemistry , Viral Vaccines/chemistry , Viral Vaccines/pharmacology , Zika Virus/metabolism
7.
Nat Struct Mol Biol ; 24(2): 184-186, 2017 02.
Article in English | MEDLINE | ID: mdl-28067914

ABSTRACT

The current Zika virus (ZIKV) epidemic is characterized by severe pathogenicity in both children and adults. Sequence changes in ZIKV since its first isolation are apparent when pre-epidemic strains are compared with those causing the current epidemic. However, the residues that are responsible for ZIKV pathogenicity are largely unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of the immature ZIKV at 9-Å resolution. The cryo-EM map was fitted with the crystal structures of the precursor membrane and envelope glycoproteins and was shown to be similar to the structures of other known immature flaviviruses. However, the immature ZIKV contains a partially ordered capsid protein shell that is less prominent in other immature flaviviruses. Furthermore, six amino acids near the interface between pr domains at the top of the spikes were found to be different between the pre-epidemic and epidemic ZIKV, possibly influencing the composition and structure of the resulting viruses.


Subject(s)
Capsid Proteins/ultrastructure , Zika Virus/ultrastructure , Aedes , Animals , Capsid Proteins/chemistry , Cell Line , Cryoelectron Microscopy , Glycosylation , Models, Molecular , Protein Processing, Post-Translational , Protein Structure, Quaternary , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...