Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 10: 715, 2019.
Article in English | MEDLINE | ID: mdl-31214229

ABSTRACT

Peach (Prunus persica) is an important economically temperate fruit. The development follows double sigmoid curve with four phases (S1-S4). We centered our work in the early development. In addition to S1, we studied the very early stage (E) characterized by the lag zone of the exponential growing phase S1, and the second stage (S2) when the pit starts hardening. "Dixiland" peach fruit were collected at 9 (E), 29 (S1), and 53 (S2) days after flowering (DAF) and endocarp and mesocarp were separated. There was a pronounced decrease in total protein content along development in both tissues. Quantitative proteomic allowed the identification of changes in protein profiles across development and revealed the main biochemical pathways sustaining tissue differentiation. Protein metabolism was the category most represented among differentially proteins in all tissues and stages. The decrease in protein synthesis machinery observed during development would be responsible of the protein fall, rather than a proteolytic process; and reduced protein synthesis during early development would reroute cell resources to lignin biosynthesis. These changes were accompanied by net decrease in total amino acids in E1-S1 and increase in S1-S2 transitions. Amino acid profiling, showed Asn parallels this trend. Concerted changes in Asn and in enzymes involved in its metabolism reveal that increased synthesis and decreased catabolism of Asn may conduct to an Asn increase during very early development and that the ß-Cyano-Alanine synthase/ß-Cyano-Alanine hydratase could be the pathway for Asn synthesis in "Dixiland" peach fruit. Additionally, photosynthetic machinery decays during early development in mesocarp and endocarp. Proteins related to photosynthesis are found to a higher extent in mesocarp than in endocarp. We conclude mesocarpic photosynthesis is possible to occur early on the development, first providing both carbon and reductive power and latter only reductive power. Together with proteomic, histological tests and anatomical analysis help to provide information about changes and differences in cells and cell-walls in both tissues. Collectively, this work represents the first approach in building protein databases during peach fruit development focusing on endocarp and mesocarp tissues and provides novel insights into the biology of peach fruit development preceding pit hardening.

2.
Physiol Plant ; 163(1): 2-17, 2018 May.
Article in English | MEDLINE | ID: mdl-29094760

ABSTRACT

Peaches ripen and deteriorate rapidly at room temperature. Therefore, refrigeration is used to slow these processes and to extend fruit market life; however, many fruits develop chilling injury (CI) during storage at low temperature. Given that cell membranes are likely sites of the primary effects of chilling, the lipidome of six peach varieties with different susceptibility to CI was analyzed under different postharvest conditions. By using liquid chromatography coupled to mass spectrometry (LC-MS), 59 lipid species were detected, including diacyl- and triacylglycerides. The decreases in fruit firmness during postharvest ripening were accompanied by changes in the relative amount of several plastidic glycerolipid and triacylglyceride species, which may indicate their use as fuels prior to fruit senescence. In addition, levels of galactolipids were also modified in fruits stored at 0°C for short and long periods, reflecting the stabilization of plastidic membranes at low temperature. When comparing susceptible and resistant varieties, the relative abundance of certain species of the lipid classes phosphatidylethanolamine, phosphatidylcholine and digalactosyldiacylglycerol correlated with the tolerance to CI, reflecting the importance of the plasma membrane in the development of CI symptoms and allowing the identification of possible lipid markers for chilling resistance. Finally, transcriptional analysis of genes involved in galactolipid metabolism revealed candidate genes responsible for the observed changes after cold exposure. When taken together, our results highlight the importance of plastids in the postharvest physiology of fruits and provide evidence that lipid composition and metabolism have a profound influence on the cold response.


Subject(s)
Fruit/physiology , Lipids/analysis , Prunus persica/physiology , Chromatography, Liquid , Cold Temperature , Food Storage , Plastids , Tandem Mass Spectrometry
3.
Front Plant Sci ; 7: 1478, 2016.
Article in English | MEDLINE | ID: mdl-27746802

ABSTRACT

Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI) symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state. Both common and distinct metabolic responses among the six varieties were found; common changes including dramatic galactinol and raffinose rise; GABA, Asp, and Phe increase; and 2-oxo-glutarate and succinate decrease. Raffinose content after long cold treatment quantitatively correlated to the degree of mealiness resistance of the different peach varieties; and thus, raffinose emerges as a candidate biomarker of this CI disorder. Xylose increase after cold treatment was found only in the susceptible genotypes, indicating a particular cell wall reconfiguration of these varieties while being cold-stored. Overall, results indicate that peach fruit differential metabolic rearrangements due to cold treatment, rather than differential metabolic priming before cold, are better related with CI resistance. The plasticity of peach fruit metabolism renders it possible to induce a diverse metabolite array after cold, which is successful, in some genotypes, to avoid CI.

4.
Plant Cell Rep ; 35(6): 1235-46, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26905727

ABSTRACT

KEY MESSAGE: The results obtained indicate that a ß-xylosidase gene may act as good indicator of chilling tolerance and provide new insights into the complex issue of peach fruit woolliness. The storage of peaches at low temperatures for prolonged periods can induce a form of chilling injury (CI) called woolliness, characterized by a lack of juiciness and a mealy texture. As this disorder has been associated with abnormal cell wall dismantling, the levels of 12 transcripts encoding proteins involved in cell wall metabolism were analysed in cultivars with contrasting susceptibility to this disorder selected from five melting flesh peach cultivars. The resistant ('Springlady') and susceptible ('Flordaking') cultivars displayed differences in the level of expression of some of the selected genes during fruit softening and in woolly versus non-woolly fruits. From these genes, the level of expression of PpXyl, which encodes for a putative ß-xylosidase, was the one that presented the highest correlation (negative) with the susceptibility to woolliness. PpXyl expression was also analysed in a cultivar ('Rojo 2') with intermediate susceptibility to woolliness, reinforcing the conclusion about the correlation of PpXyl expression to the presence of woolliness symptom. Moreover, the level of expression of PpXyl correlated to protein level detected by Western blot. Analyses of the promoter region of the PpXyl gene (1637 bp) isolated from the three cultivars showed no differences suggesting that cis-elements from other regions of the genome and/or trans elements could be responsible of the differential PpXyl expression patterns. Overall, the results obtained indicate that PpXyl may act as a good indicator of woolliness tolerance and that the regulation of expression of this gene in different cultivars does not depend on sequences upstream the coding sequence.


Subject(s)
Cell Wall/genetics , Fruit/genetics , Prunus persica/genetics , Cold Temperature , Electrophoresis, Polyacrylamide Gel , Food Storage , Fruit/physiology , Prunus persica/physiology , Quantitative Trait, Heritable , Real-Time Polymerase Chain Reaction
5.
Food Chem ; 190: 879-888, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26213052

ABSTRACT

Peach (Prunus persica) fruits from different varieties display differential organoleptic and nutritional properties, characteristics related to their chemical composition. Here, chemical biodiversity of peach fruits from fifteen varieties, at harvest and after post-harvest ripening, was explored by gas chromatography-mass spectrometry. Metabolic profiling revealed that metabolites involved in organoleptic properties (sugars, organic and amino acids), stress tolerance (raffinose, galactinol, maltitol), and with nutritional properties (amino, caffeoylquinic and dehydroascorbic acids) displayed variety-dependent levels. Peach varieties clustered into four groups: two groups of early-harvest varieties with higher amino acid levels; two groups of mid- and late-harvest varieties with higher maltose levels. Further separation was mostly dependent on organic acids/raffinose levels. Variety-dependent and independent metabolic changes associated with ripening were detected; which contribute to chemical diversity or can be used as ripening markers, respectively. The great variety-dependent diversity in the content of metabolites that define fruit quality reinforces metabolomics usage as a tool to assist fruit quality improvement in peach.


Subject(s)
Fruit/chemistry , Prunus persica/chemistry , Gas Chromatography-Mass Spectrometry , Metabolomics
6.
Plant Cell Environ ; 37(3): 601-16, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23937123

ABSTRACT

Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. 'Dixiland' peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.


Subject(s)
Cold Temperature , Fruit/metabolism , Fruit/physiology , Hot Temperature , Metabolic Networks and Pathways , Prunus/metabolism , Prunus/physiology , Fruit/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Metabolic Networks and Pathways/genetics , Metabolome/genetics , Metabolomics , Nitrogen/metabolism , Principal Component Analysis , Prunus/genetics , Quantitative Trait, Heritable , RNA, Messenger/genetics , RNA, Messenger/metabolism , Raffinose/metabolism
7.
Funct Plant Biol ; 40(5): 449-458, 2013 May.
Article in English | MEDLINE | ID: mdl-32481121

ABSTRACT

To extend fruit market life, tomatoes are harvested before red ripe and kept at temperatures below optimum (20°C). In this work, Micro-Tom tomatoes stored at 20°C (normal ripening) were compared with those stored at 15°C or 4°C (chilling injury inducer) for 7 days. In contrast to 4°C, storage at 15°C delayed ripening with the benefit of not enhancing oxidative metabolism and of enabling ripening upon being transferred to 20°C. The transcriptional expression profile of enzymes related to cell wall metabolism was compared at the three temperatures. Although endo-ß-1,4-glucanase (Cel1), which is associated with fruit decay, was largely increased after removal from 4°C storage, its expression was not modified in fruits stored at 15°C. Enhanced transcriptional expression of xyloglucan endotransgylcosylase/hydrolases (XTHs) XTH1, -2, -10 and -11, and of two ß-xylosidases (Xyl1-2) was detected in fruits stored at 15°C with respect to those at 20°C. Following 2 days at 20°C, these transcripts remained higher in fruits stored at 15°C and XHT3 and -9 also increased. Ethylene evolution was similar in fruits kept at 15°C and 20°C; thus, the changes in the transcript profile and fruit properties between these treatments may be under the control of factors other than ethylene.

8.
PLoS One ; 7(12): e51052, 2012.
Article in English | MEDLINE | ID: mdl-23236430

ABSTRACT

Cold storage is extensively used to slow the rapid deterioration of peach (Prunus persica L. Batsch) fruit after harvest. However, peach fruit subjected to long periods of cold storage develop chilling injury (CI) symptoms. Post-harvest heat treatment (HT) of peach fruit prior to cold storage is effective in reducing some CI symptoms, maintaining fruit quality, preventing softening and controlling post-harvest diseases. To identify the molecular changes induced by HT, which may be associated to CI protection, the differential transcriptome of peach fruit subjected to HT was characterized by the differential display technique. A total of 127 differentially expressed unigenes (DEUs), with a presence-absence pattern, were identified comparing peach fruit ripening at 20°C with those exposed to a 39°C-HT for 3 days. The 127 DEUs were divided into four expression profile clusters, among which the heat-induced (47%) and heat-repressed (36%) groups resulted the most represented, including genes with unknown function, or involved in protein modification, transcription or RNA metabolism. Considering the CI-protection induced by HT, 23-heat-responsive genes were selected and analyzed during and after short-term cold storage of peach fruit. More than 90% of the genes selected resulted modified by cold, from which nearly 60% followed the same and nearly 40% opposite response to heat and cold. Moreover, by using available Arabidopsis microarray data, it was found that nearly 70% of the peach-heat responsive genes also respond to cold in Arabidopsis, either following the same trend or showing an opposite response. Overall, the high number of common responsive genes to heat and cold identified in the present work indicates that HT of peach fruit after harvest induces a cold response involving complex cellular processes; identifying genes that are involved in the better preparation of peach fruit for cold-storage and unraveling the basis for the CI protection induced by HT.


Subject(s)
Fruit/genetics , Gene Expression Regulation, Plant , Prunus/genetics , Transcriptome , Cold Temperature , Fruit/metabolism , Gene Expression Profiling , Hot Temperature , Prunus/metabolism
9.
Plant Physiol Biochem ; 60: 35-45, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22902552

ABSTRACT

Ripening of peach (Prunus persica L. Batsch) fruit is accompanied by dramatic cell wall changes that lead to softening. Post-harvest heat treatment is effective in delaying softening and preventing some chilling injury symptoms that this fruit exhibits after storage at low temperatures. In the present work, the levels of twelve transcripts encoding proteins involved in cell wall metabolism, as well as the differential extracellular proteome, were examined after a post-harvest heat treatment (HT; 39 °C for 3 days) of "Dixiland" peach fruit. A typical softening behaviour, in correlation with an increase in 1-aminocyclopropane-1-carboxylic acid oxidase-1 (PpACO1), was observed for peach maintained at 20 °C for 3 days (R3). Six transcripts encoding proteins involved in cell wall metabolism significantly increased in R3 with respect to peach at harvest, while six showed no modification or even decreased. In contrast, after HT, fruit maintained their firmness, exhibiting low PpACO1 level and significant lower levels of the twelve cell wall-modifying genes than in R3. Differential proteomic analysis of apoplastic proteins during softening and after HT revealed a significant decrease of DUF642 proteins after HT; as well as an increase of glyceraldehyde-3-phosphate dehydrogenase (GAPC) after softening. The presence of GAPC in the peach extracellular matrix was further confirmed by in situ immunolocalization and transient expression in tomato fruit. Though further studies are required to establish the function of DUF642 and GAPC in the apoplast, this study contributes to a deeper understanding of the events during peach softening and after HT with a focus on this key compartment.


Subject(s)
Extracellular Space/metabolism , Fruit/metabolism , Plant Proteins/metabolism , Proteome , Prunus/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Cell Wall/metabolism , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Fruit/cytology , Fruit/enzymology , Fruit/genetics , Gene Expression , Gene Expression Regulation, Plant , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hot Temperature , Solanum lycopersicum/cytology , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Phenotype , Plant Proteins/genetics , Proteomics , Prunus/cytology , Prunus/enzymology , Prunus/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , Tandem Mass Spectrometry , Up-Regulation
10.
Plant Physiol ; 157(4): 1696-710, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22021422

ABSTRACT

Fruit from rosaceous species collectively display a great variety of flavors and textures as well as a generally high content of nutritionally beneficial metabolites. However, relatively little analysis of metabolic networks in rosaceous fruit has been reported. Among rosaceous species, peach (Prunus persica) has stone fruits composed of a juicy mesocarp and lignified endocarp. Here, peach mesocarp metabolic networks were studied across development using metabolomics and analysis of key regulatory enzymes. Principal component analysis of peach metabolic composition revealed clear metabolic shifts from early through late development stages and subsequently during postharvest ripening. Early developmental stages were characterized by a substantial decrease in protein abundance and high levels of bioactive polyphenols and amino acids, which are substrates for the phenylpropanoid and lignin pathways during stone hardening. Sucrose levels showed a large increase during development, reflecting translocation from the leaf, while the importance of galactinol and raffinose is also inferred. Our study further suggests that posttranscriptional mechanisms are key for metabolic regulation at early stages. In contrast to early developmental stages, a decrease in amino acid levels is coupled to an induction of transcripts encoding amino acid and organic acid catabolic enzymes during ripening. These data are consistent with the mobilization of amino acids to support respiration. In addition, sucrose cycling, suggested by the parallel increase of transcripts encoding sucrose degradative and synthetic enzymes, appears to operate during postharvest ripening. When taken together, these data highlight singular metabolic programs for peach development and may allow the identification of key factors related to agronomic traits of this important crop species.


Subject(s)
Fruit/growth & development , Gene Expression Regulation, Plant/physiology , Metabolome , Plant Proteins/metabolism , Prunus/growth & development , Prunus/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Biological Transport , Carboxylic Acids/analysis , Carboxylic Acids/metabolism , Disaccharides/analysis , Disaccharides/metabolism , Enzymes/genetics , Enzymes/metabolism , Fruit/enzymology , Fruit/genetics , Fruit/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Enzymologic/physiology , Metabolic Networks and Pathways , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Polyphenols/analysis , Polyphenols/metabolism , Principal Component Analysis , Prunus/enzymology , Prunus/genetics , Raffinose/analysis , Raffinose/metabolism , Sucrose/analysis , Sucrose/metabolism , Sugar Alcohols/analysis , Sugar Alcohols/metabolism
11.
Plant Cell Physiol ; 52(2): 392-403, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21186173

ABSTRACT

The use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels. In this work, a 72 h anoxic treatment by using an N(2) storage atmosphere was applied to peaches (Prunus persica L. Batsch) after harvest. Ripening was effectively delayed in treated fruits, preventing fruit softening, color changes and ethylene production. Metabolic changes induced by anoxia included induction of fermentative pathways, glycolysis and enzymes involved in both sucrose synthesis and degradation. Sucrose, fructose and glucose contents remained unchanged in treated fruit, probably due to sucrose cycling. Sorbitol was not consumed and citrate was increased, correlating with citric acid cycle impairment due to O(2) deprivation. Malate content was not affected, indicating compensation in the reactions producing and consuming malate. Changes in malic enzymes and pyruvate orthophosphate dikinase may provide pyruvate for fermentation or even act to regenerate NADP. After fruit transfer to aerobic conditions, no signs of post-anoxia injury were observed and metabolic changes were reversed, with the exception of acetaldehyde levels. The results obtained indicate that peach fruit is an organ with a high capacity for anoxic tolerance, which is in accord with the presence of hypoxic areas inside fruits and the fact that hypoxic pre-treatment improves tolerance to subsequent anoxia.


Subject(s)
Fruit/physiology , Prunus/physiology , Anaerobiosis , Carbohydrate Metabolism , Cell Hypoxia , Ethylenes/biosynthesis , Fermentation , Fruit/enzymology , Fruit/genetics , Oxygen/chemistry , Prunus/enzymology , Prunus/genetics , RNA, Plant/genetics , Sucrose/metabolism
12.
J Exp Bot ; 60(15): 4315-33, 2009.
Article in English | MEDLINE | ID: mdl-19734260

ABSTRACT

Shipping of peaches to distant markets and storage require low temperature; however, cold storage affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). In order to ameliorate CI, different strategies have been applied before cold storage; among them heat treatment (HT) has been widely used. In this work, the effect of HT on peach fruit quality as well as on carbon metabolism was evaluated. When fruit were exposed to 39 degrees C for 3 d, ripening was delayed, with softening inhibition and slowing down of ethylene production. Several differences were observed between fruit ripening at ambient temperature versus fruit that had been heat treated. However, the major effects of HT on carbon metabolism and organoleptic characteristics were reversible, since normal fruit ripening was restored after transferring heated peaches to ambient temperature. Positive quality features such as an increment in the fructose content, largely responsible for the sweetness, and reddish coloration were observed. Nevertheless, high amounts of acetaldehyde and low organic acid content were also detected. The differential proteome of heated fruit was characterized, revealing that heat-induced CI tolerance may be acquired by the activation of different molecular mechanisms. Induction of related stress proteins in the heat-exposed fruits such as heat shock proteins, cysteine proteases, and dehydrin, and repression of a polyphenol oxidase provide molecular evidence of candidate proteins that may prevent some of the CI symptoms. This study contributes to a deeper understanding of the cellular events in peach under HT in view of a possible technological use aimed to improve organoleptic and shelf-life features.


Subject(s)
Fruit/genetics , Proteomics , Prunus/genetics , Electrophoresis, Gel, Two-Dimensional , Ethylenes/metabolism , Fruit/chemistry , Fruit/metabolism , Gene Expression Regulation, Plant , Hot Temperature , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus/chemistry , Prunus/metabolism
13.
J Exp Bot ; 60(6): 1823-37, 2009.
Article in English | MEDLINE | ID: mdl-19264753

ABSTRACT

Peach (Prunus persica L. Batsch) is a climacteric fruit that ripens after harvest, prior to human consumption. Organic acids and soluble sugars contribute to the overall organoleptic quality of fresh peach; thus, the integrated study of the metabolic pathways controlling the levels of these compounds is of great relevance. Therefore, in this work, several metabolites and enzymes involved in carbon metabolism were analysed during the post-harvest ripening of peach fruit cv 'Dixiland'. Depending on the enzyme studied, activity, protein level by western blot, or transcript level by quantitative real time-PCR were analysed. Even though sorbitol did not accumulate at a high level in relation to sucrose at harvest, it was rapidly consumed once the fruit was separated from the tree. During the ripening process, sucrose degradation was accompanied by an increase of glucose and fructose. Specific transcripts encoding neutral invertases (NIs) were up-regulated or down-regulated, indicating differential functions for each putative NI isoform. Phosphoenolpyruvate carboxylase was markedly induced, and may participate as a glycolytic shunt, since the malate level did not increase during post-harvest ripening. The fermentative pathway was highly induced, with increases in both the acetaldehyde level and the enzymes involved in this process. In addition, proteins differentially expressed during the post-harvest ripening process were also analysed. Overall, the present study identified enzymes and pathways operating during the post-harvest ripening of peach fruit, which may contribute to further identification of varieties with altered levels of enzymes/metabolites or in the evaluation of post-harvest treatments to produce fruit of better organoleptic attributes.


Subject(s)
Carbohydrate Metabolism , Organic Chemicals/metabolism , Plant Proteins/metabolism , Prunus/enzymology , Fruit/metabolism , Plant Proteins/genetics , Proteome/genetics , Proteome/metabolism , Prunus/genetics , Prunus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...