Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 112(7): 1431-1443, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34384240

ABSTRACT

Policymakers and donors often need to identify the locations where technologies are most likely to have important effects, to increase the benefits from agricultural development or extension efforts. Higher-quality information may help to target the high-benefit locations, but often actions are needed with limited information. The value of information (VOI) in this context is formalized by evaluating the results of decision making guided by a set of specific information compared with the results of acting without considering that information. We present a framework for management performance mapping that includes evaluating the VOI for decision making about geographic priorities in regional intervention strategies, in case studies of Andean and Kenyan potato seed systems. We illustrate the use of recursive partitioning, XGBoost, and Bayesian network models to characterize the relationships among seed health and yield responses and environmental and management predictors used in studies of seed degeneration. These analyses address the expected performance of an intervention based on geographic predictor variables. In the Andean example, positive selection of seed from asymptomatic plants was more effective at high altitudes in Ecuador. In the Kenyan example, there was the potential to target locations with higher technology adoption rates and with higher potato cropland connectivity, i.e., a likely more important role in regional epidemics. Targeting training to high management performance areas would often provide more benefits than would random selection of target areas. We illustrate how assessing the VOI can contribute to targeted development programs and support a culture of continuous improvement for interventions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Seeds , Solanum tuberosum , Bayes Theorem , Ecuador , Kenya , Plant Diseases/prevention & control
2.
Phytopathology ; 109(9): 1519-1532, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30785374

ABSTRACT

Seed systems are critical for deployment of improved varieties but also can serve as major conduits for the spread of seedborne pathogens. As in many other epidemic systems, epidemic risk in seed systems often depends on the structure of networks of trade, social interactions, and landscape connectivity. In a case study, we evaluated the structure of an informal sweet potato seed system in the Gulu region of northern Uganda for its vulnerability to the spread of emerging epidemics and its utility for disseminating improved varieties. Seed transaction data were collected by surveying vine sellers weekly during the 2014 growing season. We combined data from these observed seed transactions with estimated dispersal risk based on village-to-village proximity to create a multilayer network or "supranetwork." Both the inverse power law function and negative exponential function, common models for dispersal kernels, were evaluated in a sensitivity analysis/uncertainty quantification across a range of parameters chosen to represent spread based on proximity in the landscape. In a set of simulation experiments, we modeled the introduction of a novel pathogen and evaluated the influence of spread parameters on the selection of villages for surveillance and management. We found that the starting position in the network was critical for epidemic progress and final epidemic outcomes, largely driven by node out-degree. The efficacy of node centrality measures was evaluated for utility in identifying villages in the network to manage and limit disease spread. Node degree often performed as well as other, more complicated centrality measures for the networks where village-to-village spread was modeled by the inverse power law, whereas betweenness centrality was often more effective for negative exponential dispersal. This analysis framework can be applied to provide recommendations for a wide variety of seed systems.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Epidemics , Ipomoea batatas , Plant Diseases/microbiology , Seeds/microbiology , Uganda
3.
Annu Rev Phytopathol ; 56: 559-580, 2018 08 25.
Article in English | MEDLINE | ID: mdl-29979928

ABSTRACT

Plant pathology must address a number of challenges, most of which are characterized by complexity. Network analysis offers useful tools for addressing complex systems and an opportunity for synthesis within plant pathology and between it and relevant disciplines such as in the social sciences. We discuss applications of network analysis, which ultimately may be integrated together into more synthetic analyses of how to optimize plant disease management systems. The analysis of microbiome networks and tripartite phytobiome networks of host-vector-pathogen interactions offers promise for identifying biocontrol strategies and anticipating disease emergence. Linking epidemic network analysis with social network analysis will support strategies for sustainable agricultural development and for scaling up solutions for disease management. Statistical tools for evaluating networks, such as Bayesian network analysis and exponential random graph models, have been underused in plant pathology and are promising for informing strategies. We conclude with research priorities for network analysis applications in plant pathology.


Subject(s)
Agriculture/methods , Microbiota , Plant Diseases/microbiology , Plant Pathology , Agriculture/instrumentation , Bayes Theorem , Host-Pathogen Interactions , Plant Pathology/instrumentation , Plants/microbiology
4.
Phytopathology ; 107(10): 1209-1218, 2017 10.
Article in English | MEDLINE | ID: mdl-28742457

ABSTRACT

Seed systems have an important role in the distribution of high-quality seed and improved varieties. The structure of seed networks also helps to determine the epidemiological risk for seedborne disease. We present a new approach for evaluating the epidemiological role of nodes in seed networks, and apply it to a regional potato farmer consortium (Consorcio de Productores de Papa [CONPAPA]) in Ecuador. We surveyed farmers to estimate the structure of networks of farmer seed tuber and ware potato transactions, and farmer information sources about pest and disease management. Then, we simulated pathogen spread through seed transaction networks to identify priority nodes for disease detection. The likelihood of pathogen establishment was weighted based on the quality or quantity of information sources about disease management. CONPAPA staff and facilities, a market, and certain farms are priorities for disease management interventions such as training, monitoring, and variety dissemination. Advice from agrochemical store staff was common but assessed as significantly less reliable. Farmer access to information (reported number and quality of sources) was similar for both genders. However, women had a smaller amount of the market share for seed tubers and ware potato. Understanding seed system networks provides input for scenario analyses to evaluate potential system improvements. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Subject(s)
Epidemics , Introduced Species , Plant Diseases/microbiology , Seeds/microbiology , Solanum tuberosum/microbiology , Computer Simulation , Crops, Agricultural , Ecuador , Female , Humans , Male , Models, Theoretical , Plant Diseases/statistics & numerical data , Plant Tubers/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...