Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 133(6)2020 03 19.
Article in English | MEDLINE | ID: mdl-32041904

ABSTRACT

The proteasome is an essential regulator of protein homeostasis. In yeast and many mammalian cells, proteasomes strongly concentrate in the nucleus. Sts1 from the yeast Saccharomyces cerevisiae is an essential protein linked to proteasome nuclear localization. Here, we show that Sts1 contains a non-canonical bipartite nuclear localization signal (NLS) important for both nuclear localization of Sts1 itself and the proteasome. Sts1 binds the karyopherin-α import receptor (Srp1) stoichiometrically, and this requires the NLS. The NLS is essential for viability, and over-expressed Sts1 with an inactive NLS interferes with 26S proteasome import. The Sts1-Srp1 complex binds preferentially to fully assembled 26S proteasomes in vitro Sts1 is itself a rapidly degraded 26S proteasome substrate; notably, this degradation is ubiquitin independent in cells and in vitro and is inhibited by Srp1 binding. Mutants of Sts1 are stabilized, suggesting that its degradation is tightly linked to its role in localizing proteasomes to the nucleus. We propose that Sts1 normally promotes nuclear import of fully assembled proteasomes and is directly degraded by proteasomes without prior ubiquitylation following karyopherin-α release in the nucleus.


Subject(s)
Nuclear Localization Signals , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
J Mol Biol ; 429(22): 3500-3524, 2017 11 10.
Article in English | MEDLINE | ID: mdl-28583440

ABSTRACT

The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.


Subject(s)
Eukaryotic Cells/enzymology , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/ultrastructure , Protein Multimerization , Cryoelectron Microscopy
3.
J Chem Inf Model ; 55(9): 1836-43, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26347990

ABSTRACT

With the hope of discovering effective analgesics with fewer side effects, attention has recently shifted to allosteric modulators of the opioid receptors. In the past two years, the first chemotypes of positive or silent allosteric modulators (PAMs or SAMs, respectively) of µ- and δ-opioid receptor types have been reported in the literature. During a structure-guided lead optimization campaign with µ-PAMs BMS-986121 and BMS-986122 as starting compounds, we discovered a new chemotype that was confirmed to display µ-PAM or µ-SAM activity depending on the specific substitutions as assessed by endomorphin-1-stimulated ß-arrestin2 recruitment assays in Chinese Hamster Ovary (CHO)-µ PathHunter cells. The most active µ-PAM of this series was analyzed further in competition binding and G-protein activation assays to understand its effects on ligand binding and to investigate the nature of its probe dependence.


Subject(s)
Drug Discovery , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/chemistry , Allosteric Regulation , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Delivery Systems , Ligands , Models, Biological , Molecular Structure , Protein Binding/drug effects , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology
4.
J Med Chem ; 58(10): 4220-9, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25901762

ABSTRACT

Allosteric modulators of G protein-coupled receptors (GPCRs) have a number of potential advantages compared to agonists or antagonists that bind to the orthosteric site of the receptor. These include the potential for receptor selectivity, maintenance of the temporal and spatial fidelity of signaling in vivo, the ceiling effect of the allosteric cooperativity which may prevent overdose issues, and engendering bias by differentially modulating distinct signaling pathways. Here we describe the discovery, synthesis, and molecular pharmacology of δ-opioid receptor-selective positive allosteric modulators (δ PAMs). These δ PAMs increase the affinity and/or efficacy of the orthosteric agonists leu-enkephalin, SNC80 and TAN67, as measured by receptor binding, G protein activation, ß-arrestin recruitment, adenylyl cyclase inhibition, and extracellular signal-regulated kinases (ERK) activation. As such, these compounds are useful pharmacological tools to probe the molecular pharmacology of the δ receptor and to explore the therapeutic potential of δ PAMs in diseases such as chronic pain and depression.


Subject(s)
Receptors, Opioid, delta/metabolism , Structure-Activity Relationship , Animals , Arrestins/metabolism , Benzamides/pharmacology , Binding, Competitive , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Chemistry Techniques, Synthetic , Cricetulus , Drug Discovery , Drug Evaluation, Preclinical/methods , Enkephalin, Leucine/pharmacology , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Molecular Structure , Molecular Targeted Therapy , Piperazines/pharmacology , Protein Binding , Quinolines/pharmacology , beta-Arrestins
5.
Arch Biochem Biophys ; 569: 32-44, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25668719

ABSTRACT

l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.


Subject(s)
Ascorbic Acid/biosynthesis , Caenorhabditis elegans/metabolism , Animals , Antioxidants/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Carbon Isotopes , Chromatography, High Pressure Liquid , Ethanol/toxicity , Gas Chromatography-Mass Spectrometry , Genes, Helminth , Metabolic Networks and Pathways , Oxidative Stress/drug effects , Paraquat/toxicity
6.
Exp Gerontol ; 61: 20-30, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25449858

ABSTRACT

Previous studies have shown that exposing adults of the soil-dwelling nematode Caenorhabditis elegans to concentrations of ethanol in the range of 100-400mM results in slowed locomotion, decreased fertility, and reduced longevity. On the contrary, lower concentrations of ethanol (0.86-68mM) have been shown to cause a two- to three-fold increase in the life span of animals in the stress resistant L1 larval stage in the absence of a food source. However, little is known about how gene and protein expression is altered by low concentrations of ethanol and the mechanism for the increased longevity. Therefore, we used biochemical assays and next generation mRNA sequencing to identify genes and biological pathways altered by ethanol. RNA-seq analysis of L1 larvae incubated in the presence of 17mM ethanol resulted in the significant differential expression of 649 genes, 274 of which were downregulated and 375 were upregulated. Many of the genes significantly altered were associated with the conversion of ethanol and triglycerides to acetyl-CoA and glucose, suggesting that ethanol is serving as an energy source in the increased longevity of the L1 larvae as well as a signal for fat utilization. We also asked if L1 larvae could sense ethanol and respond by directed movement. Although we found that L1 larvae can chemotax to benzaldehyde, we observed little or no chemotaxis to ethanol. Understanding how low concentrations of ethanol increase the lifespan of L1 larvae may provide insight into not only the longevity pathways in C. elegans, but also in those of higher organisms.


Subject(s)
Acetyl Coenzyme A/metabolism , Caenorhabditis elegans/metabolism , Ethanol/pharmacology , Longevity , Animals , Chemotaxis/drug effects , Ethanol/metabolism , Gene Expression Regulation/drug effects , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...