Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecology ; 105(6): e4318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693703

ABSTRACT

SNAPSHOT USA is a multicontributor, long-term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application (https://www.snapshot-usa.org/). The growing Snapshot dataset is useful, for example, for tracking wildlife population responses to land use, land cover, and climate changes across spatial and temporal scales. Here we present the SNAPSHOT USA 2021 dataset, the third national camera trap survey across the US. Data were collected across 109 camera trap arrays and included 1711 camera sites. The total effort equaled 71,519 camera trap nights and resulted in 172,507 sequences of animal observations. Sampling effort varied among camera trap arrays, with a minimum of 126 camera trap nights, a maximum of 3355 nights, a median 546 nights, and a mean 656 ± 431 nights. This third dataset comprises 51 camera trap arrays that were surveyed during 2019, 2020, and 2021, along with 71 camera trap arrays that were surveyed in 2020 and 2021. All raw data and accompanying metadata are stored on Wildlife Insights (https://www.wildlifeinsights.org/), and are publicly available upon acceptance of the data papers. SNAPSHOT USA aims to sample multiple ecoregions in the United States with adequate representation of each ecoregion according to its relative size. Currently, the relative density of camera trap arrays varies by an order of magnitude for the various ecoregions (0.22-5.9 arrays per 100,000 km2), emphasizing the need to increase sampling effort by further recruiting and retaining contributors. There are no copyright restrictions on these data. We request that authors cite this paper when using these data, or a subset of these data, for publication. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.


Subject(s)
Photography , United States , Animals , Mammals , Ecosystem
2.
J Wildl Dis ; 60(2): 434-447, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38305090

ABSTRACT

The parasitic mite Sarcoptes scabiei causes mange in nearly 150 species of mammals by burrowing under the skin, triggering hypersensitivity responses that can alter animals' behavior and result in extreme weight loss, secondary infections, and even death. Since the 1990s, sarcoptic mange has increased in incidence and geographic distribution in Pennsylvania black bear (Ursus americanus) populations, including expansion into other states. Recovery from mange in free-ranging wildlife has rarely been evaluated. Following the Pennsylvania Game Commission's standard operating procedures at the time of the study, treatment consisted of one subcutaneous injection of ivermectin. To evaluate black bear survival and recovery from mange, from 2018 to 2020 we fitted 61 bears, including 43 with mange, with GPS collars to track their movements and recovery. Bears were collared in triplicates according to sex and habitat, consisting of one bear without mange (healthy control), one scabietic bear treated with ivermectin when collared, and one untreated scabietic bear. Bears were reevaluated for signs of mange during annual den visits, if recaptured during the study period, and after mortality events. Disease status and recovery from mange was determined based on outward gross appearance and presence of S. scabiei mites from skin scrapes. Of the 36 scabietic bears with known recovery status, 81% fully recovered regardless of treatment, with 88% recovered with treatment and 74% recovered without treatment. All bears with no, low, or moderate mite burdens (<16 mites on skin scrapes) fully recovered from mange (n=20), and nearly half of bears with severe mite burden (≥16 mites) fully recovered (n=5, 42%). However, nonrecovered status did not indicate mortality, and mange-related mortality was infrequent. Most bears were able to recover from mange irrespective of treatment, potentially indicating a need for reevaluation of the mange wildlife management paradigm.


Subject(s)
Scabies , Ursidae , Humans , Animals , Scabies/drug therapy , Scabies/veterinary , Scabies/diagnosis , Ivermectin/therapeutic use , Ursidae/parasitology , Sarcoptes scabiei , Animals, Wild/parasitology , Pennsylvania
3.
J Anim Ecol ; 92(6): 1267-1284, 2023 06.
Article in English | MEDLINE | ID: mdl-36995500

ABSTRACT

Climate and land use change are two of the primary threats to global biodiversity; however, each species within a community may respond differently to these facets of global change. Although it is typically assumed that species use the habitat that is advantageous for survival and reproduction, anthropogenic changes to the environment can create ecological traps, making it critical to assess both habitat selection (e.g. where species congregate on the landscape) and the influence of selected habitats on the demographic processes that govern population dynamics. We used a long-term (1958-2011), large-scale, multi-species dataset for waterfowl that spans the United States and Canada to estimate species-specific responses to climate and land use variables in a landscape that has undergone significant environmental change across space and time. We first estimated the effects of change in climate and land use variables on habitat selection and population dynamics for nine species. We then hypothesized that species-specific responses to environmental change would scale with life-history traits, specifically: longevity, nesting phenology and female breeding site fidelity. We observed species-level heterogeneity in the demographic and habitat selection responses to climate and land use change, which would complicate community-level habitat management. Our work highlights the importance of multi-species monitoring and community-level analysis, even among closely related species. We detected several relationships between life-history traits, particularly nesting phenology, and species' responses to environmental change. One species, the early-nesting northern pintail (Anas acuta), was consistently at the extreme end of responses to land use and climate predictors and has been a species of conservation concern since their population began to decline in the 1980s. They, and the blue-winged teal, also demonstrated a positive habitat selection response to the proportion of cropland on the landscape that simultaneously reduced abundance the following year, indicative of susceptibility to ecological traps. By distilling the diversity of species' responses to environmental change within a community, our methodological approach and findings will help improve predictions of community responses to global change and can inform multi-species management and conservation plans in dynamic landscapes that are based on simple tenets of life-history theory.


Subject(s)
Ecosystem , Life History Traits , Female , United States , Animals , Climate , Population Dynamics , Biodiversity , Climate Change
4.
Front Behav Neurosci ; 16: 1020837, 2022.
Article in English | MEDLINE | ID: mdl-36425283

ABSTRACT

Zebrafish (Danio rerio) are widely accepted as a multidisciplinary vertebrate model for neurobehavioral and clinical studies, and more recently have become established as a model for exercise physiology and behavior. Individual differences in activity level (e.g., exploration) have been characterized in zebrafish, however, how different levels of exploration correspond to differences in motivation to engage in swimming behavior has not yet been explored. We screened individual zebrafish in two tests of exploration: the open field and novel tank diving tests. The fish were then exposed to a tank in which they could choose to enter a compartment with a flow of water (as a means of testing voluntary motivation to exercise). After a 2-day habituation period, behavioral observations were conducted. We used correlative analyses to investigate the robustness of the different exploration tests. Due to the complexity of dependent behavioral variables, we used machine learning to determine the personality variables that were best at predicting swimming behavior. Our results show that contrary to our predictions, the correlation between novel tank diving test variables and open field test variables was relatively weak. Novel tank diving variables were more correlated with themselves than open field variables were to each other. Males exhibited stronger relationships between behavioral variables than did females. In terms of swimming behavior, fish that spent more time in the swimming zone spent more time actively swimming, however, swimming behavior was inconsistent across the time of the study. All relationships between swimming variables and exploration tests were relatively weak, though novel tank diving test variables had stronger correlations. Machine learning showed that three novel tank diving variables (entries top/bottom, movement rate, average top entry duration) and one open field variable (proportion of time spent frozen) were the best predictors of swimming behavior, demonstrating that the novel tank diving test is a powerful tool to investigate exploration. Increased knowledge about how individual differences in exploration may play a role in swimming behavior in zebrafish is fundamental to their utility as a model of exercise physiology and behavior.

5.
Mov Ecol ; 9(1): 30, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116712

ABSTRACT

BACKGROUND: Identifying the behavioral state for wild animals that can't be directly observed is of growing interest to the ecological community. Advances in telemetry technology and statistical methodologies allow researchers to use space-use and movement metrics to infer the underlying, latent, behavioral state of an animal without direct observations. For example, researchers studying ungulate ecology have started using these methods to quantify behaviors related to mating strategies. However, little work has been done to determine if assumed behaviors inferred from movement and space-use patterns correspond to actual behaviors of individuals. METHODS: Using a dataset with male and female white-tailed deer location data, we evaluated the ability of these two methods to correctly identify male-female interaction events (MFIEs). We identified MFIEs using the proximity of their locations in space as indicators of when mating could have occurred. We then tested the ability of utilization distributions (UDs) and hidden Markov models (HMMs) rendered with single sex location data to identify these events. RESULTS: For white-tailed deer, male and female space-use and movement behavior did not vary consistently when with a potential mate. There was no evidence that a probability contour threshold based on UD volume applied to an individual's UD could be used to identify MFIEs. Additionally, HMMs were unable to identify MFIEs, as single MFIEs were often split across multiple states and the primary state of each MFIE was not consistent across events. CONCLUSIONS: Caution is warranted when interpreting behavioral insights rendered from statistical models applied to location data, particularly when there is no form of validation data. For these models to detect latent behaviors, the individual needs to exhibit a consistently different type of space-use and movement when engaged in the behavior. Unvalidated assumptions about that relationship may lead to incorrect inference about mating strategies or other behaviors.

6.
J Anim Ecol ; 89(8): 1961-1977, 2020 08.
Article in English | MEDLINE | ID: mdl-32271949

ABSTRACT

Anthropogenic landscape alteration and climate change can have multiscale and interrelated effects on ecological systems. Such changes to the environment can disrupt the connection between habitat quality and the cues that species use to identify quality habitat, which can result in an ecological trap. Ecological traps are typically difficult to identify without fine-scale information on individual survival and fitness, but this information is rarely available over large temporal and spatial scales. The Prairie Pothole Region (PPR) of the United States and Canada has undergone extensive changes in the latter half of the 20th century due to advancements in agricultural technologies, water management practices and climate change. Historically, the PPR has been a highly productive area for breeding waterfowl. While the overall trends for dabbling ducks in the PPR have exhibited increasing abundances since the late 1980s, some species, such as the northern pintail, have been declining in abundance. We used a long-term dataset of pintail counts across the PPR to separate count data into a demographic process and a habitat selection process using a hierarchical model. The hierarchical model provided an alternative way of identifying ecological traps in the absence of individual survival and fitness. Our model also allowed us to account for the indirect pathways by which climate and agriculture impact pintail through their additional contribution to wetland availability, which is a primary driver of pintail demography and habitat selection. Decoupling these processes allowed us to identify an ecological trap related to increasing cropland land cover, in which pintail selected for cropland over alternative nesting habitat, likely due to the similarities with productive native mixed-grass prairie. However, large proportions of cropland within a region resulted in fewer pintail the following year, likely due to nest failures from predation and agricultural practices. In addition, we identified several regions in Canada where this ecological trap is contributing significantly to mismatches between habitat selection and demographic processes.


Subject(s)
Ecosystem , Plant Breeding , Animals , Canada , Climate Change , United States , Wetlands
7.
Ecol Evol ; 9(18): 10415-10431, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31632646

ABSTRACT

As human populations continue to expand across the world, the need to understand and manage wildlife populations within the wildland-urban interface is becoming commonplace. This is especially true for large carnivores as these species are not always tolerated by the public and can pose a risk to human safety. Unfortunately, information on wildlife species within the wildland-urban interface is sparse, and knowledge from wildland ecosystems does not always translate well to human-dominated systems. Across western North America, cougars (Puma concolor) are routinely utilizing wildland-urban habitats while human use of these areas for homes and recreation is increasing. From 2007 to 2015, we studied cougar resource selection, human-cougar interaction, and cougar conflict management within the wildland-urban landscape of the northern Front Range in Colorado, USA. Resource selection of cougars within this landscape was typical of cougars in more remote settings but cougar interactions with humans tended to occur in locations cougars typically selected against, especially those in proximity to human structures. Within higher housing density areas, 83% of cougar use occurred at night, suggesting cougars generally avoided human activity by partitioning time. Only 24% of monitored cougars were reported for some type of conflict behavior but 39% of cougars sampled during feeding site investigations of GPS collar data were found to consume domestic prey items. Aversive conditioning was difficult to implement and generally ineffective for altering cougar behaviors but was thought to potentially have long-term benefits of reinforcing fear of humans in cougars within human-dominated areas experiencing little cougar hunting pressure. Cougars are able to exploit wildland-urban landscapes effectively, and conflict is relatively uncommon compared with the proportion of cougar use. Individual characteristics and behaviors of cougars within these areas are highly varied; therefore, conflict management is unique to each situation and should target individual behaviors. The ability of individual cougars to learn to exploit these environments with minimal human-cougar interactions suggests that maintaining older age structures, especially females, and providing a matrix of habitats, including large connected open-space areas, would be beneficial to cougars and effectively reduce the potential for conflict.

8.
Mov Ecol ; 6: 22, 2018.
Article in English | MEDLINE | ID: mdl-30410764

ABSTRACT

BACKGROUND: While many species have suffered from the detrimental impacts of increasing human population growth, some species, such as cougars (Puma concolor), have been observed using human-modified landscapes. However, human-modified habitat can be a source of both increased risk and increased food availability, particularly for large carnivores. Assessing preferential use of the landscape is important for managing wildlife and can be particularly useful in transitional habitats, such as at the wildland-urban interface. Preferential use is often evaluated using resource selection functions (RSFs), which are focused on quantifying habitat preference using either a temporally static framework or researcher-defined temporal delineations. Many applications of RSFs do not incorporate time-varying landscape availability or temporally-varying behavior, which may mask conflict and avoidance behavior. METHODS: Contemporary approaches to incorporate landscape availability into the assessment of habitat selection include spatio-temporal point process models, step selection functions, and continuous-time Markov chain (CTMC) models; in contrast with the other methods, the CTMC model allows for explicit inference on animal movement in continuous-time. We used a hierarchical version of the CTMC framework to model speed and directionality of fine-scale movement by a population of cougars inhabiting the Front Range of Colorado, U.S.A., an area exhibiting rapid population growth and increased recreational use, as a function of individual variation and time-varying responses to landscape covariates. RESULTS: We found evidence for individual- and daily temporal-variability in cougar response to landscape characteristics. Distance to nearest kill site emerged as the most important driver of movement at a population-level. We also detected seasonal differences in average response to elevation, heat loading, and distance to roads. Motility was also a function of amount of development, with cougars moving faster in developed areas than in undeveloped areas. CONCLUSIONS: The time-varying framework allowed us to detect temporal variability that would be masked in a generalized linear model, and improved the within-sample predictive ability of the model. The high degree of individual variation suggests that, if agencies want to minimize human-wildlife conflict management options should be varied and flexible. However, due to the effect of recursive behavior on cougar movement, likely related to the location and timing of potential kill-sites, kill-site identification tools may be useful for identifying areas of potential conflict.

9.
Ecology ; 98(3): 632-646, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27935640

ABSTRACT

Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.


Subject(s)
Ecology , Models, Theoretical
10.
Ecol Evol ; 4(8): 1439-50, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24834339

ABSTRACT

The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50-100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo, to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...