Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Adv ; 4(14): 2963-2970, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37465645

ABSTRACT

Bacterial microcompartments (BMCs) are proteinaceous organelle-like structures formed within bacteria, often encapsulating enzymes and cellular processes, in particular, allowing toxic intermediates to be shielded from the general cellular environment. Outside of their biological role they are of interest, through surface modification, as potential drug carriers and polyvalent antigen display scaffolds. Here we use a post-translational modification approach, using copper free click chemistry, to attach a SpyTag to a target protein molecule for attachment to a specific SpyCatcher modified BMC shell protein. We demonstrate that a post-translationally SpyTagged material can react with a SpyCatcher modified BMC and show its presence on the surface of BMCs, enabling future investigation of these structures as polyvalent antigen display scaffolds for vaccine development. This post-translational 'click' methodology overcomes the necessity to genetically encode the SpyTag, avoids any potential reduction in expression yield and expands the scope of SpyTag/SpyCatcher vaccine scaffolds to form peptide epitope vaccines and small molecule delivery agents.

2.
Metab Eng Commun ; 13: e00179, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34386349

ABSTRACT

Chinese hamster ovary (CHO) cells are the leading mammalian cell host employed to produce complex secreted recombinant biotherapeutics such as monoclonal antibodies (mAbs). Metabolic selection marker technologies (e.g. glutamine synthetase (GS) or dihydrofolate reductase (DHFR)) are routinely employed to generate such recombinant mammalian cell lines. Here we describe the development of a selection marker system based on the metabolic requirement of CHO cells to produce proline, and that uses pyrroline-5-carboxylase synthetase (P5CS) to complement this auxotrophy. Firstly, we showed the system can be used to generate cells that have growth kinetics in proline-free medium similar to those of the parent CHO cell line, CHOK1SV GS-KO™ grown in proline-containing medium. As we have previously described how engineering lipid metabolism can be harnessed to enhance recombinant protein productivity in CHO cells, we then used the P5CS selection system to re-engineer lipid metabolism by over-expression of either sterol regulatory element binding protein 1 (SREBF1) or stearoyl CoA desaturase 1 (SCD1). The cells with re-engineered proline and lipid metabolism showed consistent growth and P5CS, SCD1 and SREBF1 expression across 100 cell generations. Finally, we show that the P5CS and GS selection systems can be used together. A GS vector containing the light and heavy chains for a mAb was super-transfected into a CHOK1SV GS-KO™ host over-expressing SCD1 from a P5CS vector. The resulting stable transfectant pools achieved a higher concentration at harvest for a model difficult to express mAb than the CHOK1SV GS-KO™ host. This demonstrates that the P5CS and GS selection systems can be used concomitantly to enable CHO cell line genetic engineering and recombinant protein expression.

3.
Front Bioeng Biotechnol ; 9: 679448, 2021.
Article in English | MEDLINE | ID: mdl-34150735

ABSTRACT

Transient gene expression (TGE) in mammalian cells is a method of rapidly generating recombinant protein material for initial characterisation studies that does not require time-consuming processes associated with stable cell line construction. High TGE yields are heavily dependent on efficient delivery of plasmid DNA across both the plasma and nuclear membranes. Here, we harness the protein nucleoside diphosphate kinase (NDPK-A) that contains a nuclear localisation signal (NLS) to enhance DNA delivery into the nucleus of CHO cells. We show that co-expression of NDPK-A during transient expression results in improved transfection efficiency in CHO cells, presumably due to enhanced transportation of plasmid DNA into the nucleus via the nuclear pore complex. Furthermore, introduction of the Epstein Barr Nuclear Antigen-1 (EBNA-1), a protein that is capable of inducing extrachromosomal maintenance, when coupled with complementary oriP elements on a transient plasmid, was utilised to reduce the effect of plasmid dilution. Whilst there was attenuated growth upon introduction of the EBNA-1 system into CHO cells, when both NDPK-A nuclear import and EBNA-1 mediated technologies were employed together this resulted in enhanced transient recombinant protein yields superior to those generated using either approach independently, including when expressing the complex SARS-CoV-2 spike (S) glycoprotein.

4.
Data Brief ; 29: 105217, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32071989

ABSTRACT

The data presented in this article relates to the manuscript entitled 'Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production', published in the Journal Metabolic Engineering [1]. In the article here, we present data examining the overexpression of the lipid metabolism modifying genes SCD1 and SREBF1 in CHO cells by densitometry of western blots and by using mass spectrometry to investigate the impact on specific lipid species. We also present immunofluorescence data at the protein level upon SCD1 and SREBF1 overexpression. The growth profile data during batch culture of control CHO cells and CHO cells engineered to overexpress SCD1 and SREBF1 during batch culture are also reported. Finally, we report data on the yields of model secretory recombinant proteins produced from control, SCD1 or SREBF1 engineered cells using a transient expression systems.

5.
Metab Eng ; 57: 203-216, 2020 01.
Article in English | MEDLINE | ID: mdl-31805379

ABSTRACT

Chinese hamster ovary (CHO) cell expression systems have been exquisitely developed for the production of recombinant biotherapeutics (e.g. standard monoclonal antibodies, mAbs) and are able to generate efficacious, multi-domain proteins with human-like post translational modifications at high concentration with appropriate product quality attributes. However, there remains a need for development of new CHO cell expression systems able to produce more challenging secretory recombinant biotherapeutics at higher yield with improved product quality attributes. Amazingly, the engineering of lipid metabolism to enhance such properties has not been investigated even though the biosynthesis of recombinant proteins is at least partially controlled by cellular processes that are highly dependent on lipid metabolism. Here we show that the global transcriptional activator of genes involved in lipid biosynthesis, sterol regulatory element binding factor 1 (SREBF1), and stearoyl CoA desaturase 1 (SCD1), an enzyme which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, can be overexpressed in CHO cells to different degrees. The amount of overexpression obtained of each of these lipid metabolism modifying (LMM) genes was related to the subsequent phenotypes observed. Expression of a number of model secretory biopharmaceuticals was enhanced between 1.5-9 fold in either SREBF1 or SCD1 engineered CHO host cells as assessed under batch and fed-batch culture. The SCD1 overexpressing polyclonal pool consistently showed increased concentration of a range of products. For the SREBF1 engineered cells, the level of SREBF1 expression that gave the greatest enhancement in yield was dependent upon the model protein tested. Overexpression of both SCD1 and SREBF1 modified the lipid profile of CHO cells and the cellular structure. Mechanistically, overexpression of SCD1 and SREBF1 resulted in an expanded endoplasmic reticulum (ER) that was dependent upon the level of LMM overexpression. We conclude that manipulation of lipid metabolism in CHO cells via genetic engineering is an exciting new approach to enhance the ability of CHO cells to produce a range of different types of secretory recombinant protein products via modulation of the cellular lipid profile and expansion of the ER.


Subject(s)
Batch Cell Culture Techniques , Biological Products/metabolism , Endoplasmic Reticulum , Lipid Metabolism/genetics , Metabolic Engineering , Animals , CHO Cells , Cricetulus , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Stearoyl-CoA Desaturase/biosynthesis , Stearoyl-CoA Desaturase/genetics , Sterol Regulatory Element Binding Protein 1/biosynthesis , Sterol Regulatory Element Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...