Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics Chromatin ; 6(1): 32, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24225278

ABSTRACT

DNA replication is a highly conserved process that accurately copies the genetic information from one generation to the next. The processes of chromatin disassembly and reassembly during DNA replication also have to be precisely regulated to ensure that the genetic material is compactly packaged to fit into the nucleus while also maintaining the epigenetic information that is carried by the histone proteins bound to the DNA, through cell divisions. Half of the histones that are deposited during replication are from the parental chromatin and carry the parental epigenetic information, while the other half of the histones are newly-synthesized. It has been of growing interest to understand how the parental pattern of epigenetic marks is re-established on the newly-synthesized histones, in a DNA sequence-specific manner, in order to maintain the epigenetic information through cell divisions. In this review we will discuss how histone chaperone proteins precisely coordinate the chromatin assembly process during DNA replication. We also discuss the recent evidence that histone-modifying enzymes, rather than the parental histones, are themselves epigenetic factors that remain associated with the DNA through replication to re-establish the epigenetic information on the newly-assembled chromatin.

2.
Cell Div ; 8(1): 5, 2013 Apr 22.
Article in English | MEDLINE | ID: mdl-23607668

ABSTRACT

BACKGROUND: Cell division is positively regulated by cyclin-dependent kinases (CDKs) partnered with cyclins and negatively regulated by CDK inhibitors. In the frog, Xenopus laevis, three types of CDK inhibitors have been described: p27Xic1 (Xic1) which shares sequence homology with both p21Cip1 and p27Kip1 from mammals, p16Xic2 (Xic2) which shares sequence homology with p21Cip1, and p17Xic3 (Xic3) which shares sequence homology with p27Kip1. While past studies have demonstrated that during DNA polymerase switching, Xic1 is targeted for protein turnover dependent upon DNA, Proliferating Cell Nuclear Antigen (PCNA), and the ubiquitin ligase CRL4Cdt2, little is known about the processes that regulate Xic2 or Xic3. METHODS: We used the Xenopus interphase egg extract as a model system to examine the regulation of Xic2 by proteolysis and phosphorylation. RESULTS: Our studies indicated that following primer synthesis during the initiation of DNA replication, Xic2 is targeted for DNA- and PCNA-dependent ubiquitin-mediated proteolysis and that Cdt2 can promote Xic2 turnover. Additionally, during interphase, Xic2 is phosphorylated by CDK2 at Ser-98 and Ser-131 in a DNA-independent manner, inhibiting Xic2 turnover. In the presence of double-stranded DNA ends, Xic2 is also phosphorylated at Ser-78 and Ser-81 by a caffeine-sensitive kinase, but this phosphorylation does not alter Xic2 turnover. Conversely, in the presence or absence of DNA, Xic3 was stable in the Xenopus interphase egg extract and did not exhibit a shift indicative of phosphorylation. CONCLUSIONS: During interphase, Xic2 is targeted for DNA- and PCNA-dependent proteolysis that is negatively regulated by CDK2 phosphorylation. During a response to DNA damage, Xic2 may be alternatively regulated by phosphorylation by a caffeine-sensitive kinase. Our studies suggest that the three types of Xenopus CDK inhibitors, Xic1, Xic2, and Xic3 appear to be uniquely regulated which may reflect their specialized roles during cell division or early development in the frog.

3.
Cell Cycle ; 11(10): 2030-8, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22580462

ABSTRACT

E2F1 is a eukaryotic transcription factor that is known to regulate various cellular pathways such as cell cycle progression, DNA replication, DNA damage responses and induction of apoptosis. Given its versatile roles, a precise and tight regulation of E2F1 is very critical to maintain genomic stability. E2F1 is regulated both at transcriptional and posttranslational levels during cell cycle and upon DNA damage. After S phase, E2F1 is targeted for degradation and is kept at low levels or in an inactive state until the next G 1/S phase transition. Our studies show that APC/C ubiquitin ligase in conjunction with its co-activator Cdh1 (APC/C (Cdh1) ) can downregulate E2F1. We also identify an APC/C subunit APC5 that binds to E2F1 and is essential for E2F1 ubiquitination. We confirm an interaction between E2F1 and Cdh1 as well as an interaction between E2F1 and APC5 both in vivo and in vitro. In vitro GST pull-down assays have mapped the C-terminal 79 a.a. of E2F1 as Cdh1 interacting residues. Ectopically expressed Cdh1 downregulates the expression of E2F1-4. Our studies have also shown for the first time that E2F1 can be modified by K11-linkage specific ubiquitin chain formation (Ub-K11). The formation of Ub-K11 chains on E2F1 is increased in the presence of Cdh1 and accumulated in the presence of proteasome inhibitor, suggesting that APC/C (Cdh1) targets E2F1 for degradation by forming Ub-K11 chains. We also show that the effect of Cdh1 on E2F1 degradation is blocked upon DNA damage. Interestingly, Ub-K11-linked E2F1 accumulates after treatment of DNA damaging agents. The data suggest that DNA damage signaling processes do not inhibit APC/C (Cdh1) to ubiquitinate E2F1. Instead, they block the proteasomal degradation of Ub-K11-linked E2F1, and therefore lead to its accumulation.


Subject(s)
Cadherins/metabolism , E2F1 Transcription Factor/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin/metabolism , Anaphase-Promoting Complex-Cyclosome , Antigens, CD , Apc5 Subunit, Anaphase-Promoting Complex-Cyclosome , Cadherins/antagonists & inhibitors , Cadherins/genetics , DNA Damage , Down-Regulation , E2F1 Transcription Factor/genetics , HEK293 Cells , Humans , Protein Binding , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , RNA, Small Interfering/metabolism , S Phase , Ubiquitin/chemistry , Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitination
4.
Mol Cell Biol ; 30(17): 4120-33, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20606006

ABSTRACT

During DNA polymerase switching, the Xenopus laevis Cip/Kip-type cyclin-dependent kinase inhibitor Xic1 associates with trimeric proliferating cell nuclear antigen (PCNA) and is recruited to chromatin, where it is ubiquitinated and degraded. In this study, we show that the predominant E3 for Xic1 in the egg is the Cul4-DDB1-XCdt2 (Xenopus Cdt2) (CRL4(Cdt2)) ubiquitin ligase. The addition of full-length XCdt2 to the Xenopus extract promotes Xic1 turnover, while the N-terminal domain of XCdt2 (residues 1 to 400) cannot promote Xic1 turnover, despite its ability to bind both Xic1 and DDB1. Further analysis demonstrated that XCdt2 binds directly to PCNA through its C-terminal domain (residues 401 to 710), indicating that this interaction is important for promoting Xic1 turnover. We also identify the cis-acting sequences required for Xic1 binding to Cdt2. Xic1 binds to Cdt2 through two domains (residues 161 to 170 and 179 to 190) directly flanking the Xic1 PCNA binding domain (PIP box) but does not require PIP box sequences (residues 171 to 178). Similarly, human p21 binds to human Cdt2 through residues 156 to 161, adjacent to the p21 PIP box. In addition, we identify five lysine residues (K180, K182, K183, K188, and K193) immediately downstream of the Xic1 PIP box and within the second Cdt2 binding domain as critical sites for Xic1 ubiquitination. Our studies suggest a model in which both the CRL4(Cdt2) E3- and PIP box-containing substrates, like Xic1, are recruited to chromatin through independent direct associations with PCNA.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/metabolism , Ovum/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitin-Protein Ligases/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , DNA-Directed DNA Polymerase/metabolism , Mutation , Proliferating Cell Nuclear Antigen/genetics , Protein Binding , Protein Structure, Tertiary , Ubiquitin-Protein Ligase Complexes , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Xenopus Proteins/genetics
5.
Antimicrob Agents Chemother ; 48(12): 4513-9, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15561819

ABSTRACT

Francisella tularensis is a highly virulent facultative intracellular bacterium and is considered a potential biological warfare agent. Inhalation tularemia can lead to the development of bronchopneumonia, which is frequently fatal without medical intervention. Treatment strategies that directly target the respiratory mucosa may extend the efficacy of therapy, particularly for the medical management of acute aerosol exposure. To this end, we describe an intranasal (i.n.) strategy for the treatment of pulmonary Francisella infection in mice that uses a combinatorial approach with the conventional antibiotic gentamicin and interleukin 12 (IL-12). The i.n. administration of IL-12 alone promoted bacterial clearance and extended the time to death but did not prevent mortality against lethal pulmonary challenge with Francisella tularensis subsp. novicida. However, i.n. treatment with gentamicin and IL-12 therapeutically at 8 and 24 h after challenge markedly enhanced the rate of survival (70 to 100%) against pulmonary infection compared to the rates of survival for animals treated with antibiotic alone (17%) or IL-12 alone (0%). A delay in combinatorial therapy over a span of 4 days progressively decreased the efficacy of this treatment regimen. This combinatorial treatment was shown to be highly dependent upon the induction of endogenous gamma interferon and may also involve the activation of natural killer cells. Together, these findings suggest that IL-12 may be a potent adjunct for chemotherapy to enhance drug effectiveness against pulmonary Francisella infection.


Subject(s)
Adjuvants, Immunologic/pharmacology , Francisella tularensis , Interleukin-12/pharmacology , Lung/microbiology , Tularemia/drug therapy , Tularemia/microbiology , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Anti-Bacterial Agents/therapeutic use , Female , Gentamicins/therapeutic use , Interferon-gamma/therapeutic use , Interleukin-12/administration & dosage , Mice , Mice, Inbred BALB C , Phagocytosis/drug effects , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...