Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Adv Pharm Technol Res ; 15(1): 8-12, 2024.
Article in English | MEDLINE | ID: mdl-38389969

ABSTRACT

Garcinia dulcis and Garcinia forbesii King are native plants from Indonesia and have tremendous potential as a source of raw medicines based on local wisdom. However, scientific data for strengthening pharmaceuticals are still limited. Therefore, it is necessary to conduct a study to strengthen and develop the potential of both plants using the approach of traditional medicine. This study aimed to explore the secondary metabolite composition and biological activity (antioxidant and antielastase) of both plants. Both samples were extracted using 70% ethanol and microwave-assisted extraction with a microwave power of 120 watts for 15 min. The extract obtained was then screened for phytochemicals using specific reagents. The total phenolic content (TPC) was determined using spectrophotometry with a 96-well microplate reader method. The total flavonoid content (TFC) was determined using the colorimetric method, whereas metabolite profiling analysis was conducted using the UPLC-QToF-MS/MS system. Meanwhile, biological activity was tested for antioxidant activity and antielastase as measured by a microplate reader 96-well spectrophotometry method at specific wavelengths. According to the results, G. dulcis and G. forbesii fruit peel extracts showed positive detection of particular secondary metabolites. TPC and TFC values were 13.98 ± 1.90 mg GAE/g and 10.33 ± 1.90 mg QE/g for G. dulcis and 11.98 ± 2.04 mgGAE/g and 1.96 ± 0.36 mgQE/g for G. forbesii. Metabolite profiling detected some compounds from G. dulcis, including ephedrannin B, hinokiflavone, mahuannin J, and candidate mass C9H12O8, and G. forbesii, including 5-Hydroxy-7,8,2'- trimethoxyflavone, lucialdehyde B, candidate mass C21H39NO4, candidate mass C14H10O6, and candidate mass C14H12O6. Meanwhile, the biological activities (antioxidant and antielastase) were 137.721 µg/mL and 108.893 µg/mL for G. dulcis and 481.948 µg/mL and 250.611 µg/mL for G. forbesii, respectively. Both plants showed different profiles of secondary metabolites and biological activities (antioxidant and antielastase) according to their respective characteristics.

2.
Pathogens ; 12(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764985

ABSTRACT

Primaquine for radical cure of Plasmodium vivax malaria poses a potentially life-threatening risk of haemolysis in G6PD-deficient patients. Herein, we review five events of acute haemolytic anaemia following the administration of primaquine in four malaria trials from Indonesia, the Solomon Islands, and Vietnam. Five males aged 9 to 48 years were improperly classified as G6PD-normal by various screening procedures and included as subjects in trials of anti-relapse therapy with daily primaquine. Routine safety monitoring by physical examination, urine inspection, and blood haemoglobin (Hb) assessment were performed in all those trials. Early signs of acute haemolysis, i.e., dark urine and haemoglobin drop >20%, occurred only after day 3 and as late as day 8 of primaquine dosing. All patients were hospitalized and fully recovered, all but one following blood transfusion rescue. Hb nadir was 4.7 to 7.9 g/dL. Hospitalization was for 1 to 7 days. Hb levels returned to baseline values 3 to 10 days after transfusion. Failed G6PD screening procedures in these trials led G6PD-deficient patients to suffer harmful exposures to primaquine. The safe application of primaquine anti-relapse therapy requires G6PD screening and anticipation of its failure with a means of prompt detection and rescue from the typically abrupt haemolytic crisis.

3.
Antibodies (Basel) ; 12(3)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37753974

ABSTRACT

BACKGROUND: To fight the COVID-19 pandemic, immunity against SARS-CoV-2 should be achieved not only through natural infection but also by vaccination. The effect of COVID-19 vaccination on previously infected persons is debatable. METHODS: A prospective cohort was undergone to collect sera from unvaccinated survivors and vaccinated persons-with and without COVID-19 pre-infection. The sera were analyzed for the anti-receptor binding domain (RBD) titers by ELISA and for the capacity to neutralize the pseudovirus of the Wuhan-Hu-1 strain by luciferase assays. RESULTS: Neither the antibody titers nor the neutralization capacity was significantly different between the three groups. However, the correlation between the antibody titers and the percentage of viral neutralization derived from sera of unvaccinated survivors was higher than that from vaccinated persons with pre-infection and vaccinated naïve individuals (Spearman correlation coefficient (r) = -0.8558; 95% CI, -0.9259 to -0.7288), p < 0.0001 vs. -0.7855; 95% CI, -0.8877 to -0.6096, p < 0.0001 and -0.581; 95% CI, -0.7679 to -0.3028, p = 0.0002, respectively), indicating the capacity to neutralize the virus is most superior by infection alone. CONCLUSIONS: Vaccines induce anti-RBD titers as high as the natural infection with lower neutralization capacity, and it does not boost immunity in pre-infected persons.

4.
Malar J ; 22(1): 221, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528368

ABSTRACT

BACKGROUND: The recent deforestation for agricultural, mining, and human re-settlement has significantly reduced the habitat of many non-human primates (NHPs) in Indonesia and intensifies interaction between the NHPs and humans and thus opening the possibility of pathogen spill-over. The emergence of zoonotic malaria, such as Plasmodium knowlesi, poses an immense threat to the current malaria control and elimination that aims for the global elimination of malaria by 2030. As malaria in humans and NHPs is transmitted by the female Anopheles mosquito, malaria vector control is very important to mitigate the spill-over of the malaria parasite to humans. The present study aims to explore the Anopheles species diversity in human settlements adjacent to the wildlife sanctuary forest in Buton Utara Regency, Southeast Sulawesi, Indonesia, and identify the species that potentially transmit the pathogen from monkey to human in the area. METHODS: Mosquito surveillance was conducted using larval and adult collection, and the collected mosquitoes were identified morphologically and molecularly using the barcoding markers, cytochrome oxidase subunit I (COI), and internal transcribed species 2 (ITS2) genes. Plasmodium sporozoite carriage was conducted on mosquitoes collected through human landing catch (HLC) and human-baited double net trap (HDNT). RESULTS: The results revealed several Anopheles species, such as Anopheles flavirostris (16.6%), Anopheles sulawesi (3.3%), Anopheles maculatus (3.3%), Anopheles koliensis (1.2%), and Anopheles vagus (0.4%). Molecular analysis of the sporozoite carriage using the primate-specific malaria primers identified An. sulawesi, a member of the Leucosphyrus group, carrying Plasmodium inui sporozoite. CONCLUSIONS: This study indicates that the transmission of zoonotic malaria in the area is possible and alerts to the need for mitigation efforts through a locally-tailored vector control intervention and NHPs habitat conservation.


Subject(s)
Anopheles , Malaria , Plasmodium knowlesi , Animals , Adult , Humans , Female , Malaria/epidemiology , Animals, Wild , Anopheles/genetics , Anopheles/parasitology , Indonesia , Mosquito Vectors , Plasmodium knowlesi/genetics , Haplorhini
5.
Malar J ; 22(1): 231, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37553646

ABSTRACT

BACKGROUND: Dihydroartemisinin-piperaquine has been Indonesia's first-line anti-malarial treatment since 2008. Annual therapeutic efficacy studies (TES) done in the last 12 years showed continued high treatment efficacy in uncomplicated Plasmodium falciparum malaria. Although these studies did not show evidence for artemisinin resistance, a slight increase in Late Treatment Failure was observed over time. It is highlight to explore the evolution of genetic markers for ACT partner drug resistance since adopting DHA-PPQ. METHODS: Dry blood spots were identified from a mass blood survey of uncomplicated falciparum malaria patients (N = 50) in Sumba from 2010 to 2018. Analysis of genotypic profile (N = 51) and a Therapeutic Efficacy Study (TES) from Papua (N = 142) from 2020 to 2021, 42-day follow-up. PCR correction using msp1, msp2, and glurp was used to distinguish recrudescence and reinfection. Parasite DNA from DBSs was used for genotyping molecular markers for antimalaria drug resistance, including in Pfk13, pfcrt, and pfmdr1, as well as gene copy number variation in pfpm2/3 and pfmdr1. RESULTS: The study revealed the absence of SNPs associated with ART resistance and several novel SNPs such as L396F, I526V, M579I and N537S (4.25%). In Sumba, the mutant haplotype SDD of pfmdr1 was found in one-third of the isolates, while only 8.9% in Papua. None of the pfcrt mutations linked to piperaquine resistance were observed, but 71% of isolates had pfcrt I356L. Amplification of the pfpm2/3 genes was in Sumba (17.02%) and Papua (13.7%), while pfmdr1 copy number prevalence was low (3.8%) in both areas. For the TES study, ten recurrences of infection were observed on days 28, 35, and 42. Late parasitological failure (LPF) was observed in 10/117 (8.5%) subjects by microscopy. PCR correction revealed that all nine cases were re-infections and one was confirmed as recrudescence. CONCLUSION: This study revealed that DHA-PPQ is still highly effective against P. falciparum. The genetic architecture of the parasite P. falciparum isolates during 2010-2021 revealed single copy of Pfpm2 and pfmdr1 were highly prevalent. The slight increase in DHA-PPQ LTF alerts researchers to start testing other ACTs as alternatives to DHA-PPQ for baseline data in order to get a chance of achieving malaria elimination wants by 2030.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Genetic Markers , DNA Copy Number Variations , Indonesia , Plasmodium falciparum , Malaria, Falciparum/epidemiology , Malaria/drug therapy , Drug Resistance/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
6.
Parasit Vectors ; 16(1): 267, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550692

ABSTRACT

BACKGROUND: Indonesia is home to many species of non-human primates (NHPs). Deforestation, which is still ongoing in Indonesia, has substantially reduced the habitat of NHPs in the republic. This has led to an intensification of interactions between NHPs and humans, which opens up the possibility of pathogen spillover. The aim of the present study was to determine the prevalence of malarial parasite infections in NHPs in five provinces of Indonesia in 2022. Species of the genus Anopheles that can potentially transmit malarial pathogens to humans were also investigated. METHODS: An epidemiological survey was conducted by capturing NHPs in traps installed in several localities in the five provinces, including in the surroundings of a wildlife sanctuary. Blood samples were drawn aseptically after the NHPs had been anesthetized; the animals were released after examination. Blood smears were prepared on glass slides, and dried blood spot tests on filter paper. Infections with Plasmodium spp. were determined morphologically from the blood smears, which were stained with Giemsa solution, and molecularly through polymerase chain reaction and DNA sequencing using rplU oligonucleotides. The NHPs were identified to species level by using the mitochondrial cytochrome c oxidase subunit I gene and the internal transcribed spacer 2 gene as barcoding DNA markers. Mosquito surveillance included the collection of larvae from breeding sites and that of adults through the human landing catch (HLC) method together with light traps. RESULTS: Analysis of the DNA extracted from the dried blood spot tests of the 110 captured NHPs revealed that 50% were positive for Plasmodium, namely Plasmodium cynomolgi, Plasmodium coatneyi, Plasmodium inui, Plasmodium knowlesi and Plasmodium sp. Prevalence determined by microscopic examination of the blood smears was 42%. Species of the primate genus Macaca and family Hylobatidae were identified by molecular analysis. The most common mosquito breeding sites were ditches, puddles and natural ponds. Some of the Anopheles letifer captured through HLC carried sporozoites of malaria parasites that can cause the disease in primates. CONCLUSIONS: The prevalence of malaria in the NHPs was high. Anopheles letifer, a potential vector of zoonotic malaria, was identified following its collection in Central Kalimantan by the HLC method. In sum, the potential for the transmission of zoonotic malaria in several regions of Indonesia is immense.


Subject(s)
Anopheles , Malaria , Plasmodium knowlesi , Animals , Humans , Indonesia/epidemiology , Mosquito Vectors , Malaria/epidemiology , Malaria/veterinary , Malaria/parasitology , Plasmodium knowlesi/genetics , Primates , Macaca , Anopheles/parasitology
7.
R Soc Open Sci ; 10(6): 230247, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37351492

ABSTRACT

A pure-phase Cu2O film photocatalyst was successfully prepared by the electrodeposition technique from a non-pH-adjusted solution. To investigate the phase evolution and photocatalytic activity of the film, the electrodeposition was conducted at different deposition temperatures. Photocatalytic activity of the films was evaluated from methylene blue (MB) dye degradation. The Cu2O phase initially appeared at room temperature and its fraction was found to increase with increasing the deposition temperature, while the impurity phase was successfully diminished. A pure Cu2O film with a narrow optical bandgap energy of 1.96 eV was obtained at 75°C. The multi-faceted crystals were found to form at 45°C and became a truncated octahedral structure that possessed {111} and {100} facets as deposition temperature further increased. A preferred orientation growth of {110} facet, which is known to possess a relatively high surface energy, was produced at 75°C. The performance of MB photodegradation enhanced gradually by increasing the deposition temperature. The increase of photocatalytic activity could be attributed to the rise of photoelectrochemical response and the decrease of resistance charge transfer because of narrowing bandgap energy, increasing Cu2O fraction, and growing a relatively high catalytic activity facet which had escalated redox reaction that decomposed MB at the photocatalyst-solution interface.

8.
One Health ; 14: 100389, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35686151

ABSTRACT

The emergence of zoonotic malaria in different parts of the world, including Indonesia poses a challenge to the current malaria control and elimination program that target global malaria elimination at 2030. The reported cases in human include Plasmodium knowlesi, P. cynomolgi and P. inui, in South and Southeast Asian region and P. brazilianum and P. simium in Latin America. All are naturally found in the Old and New-world monkeys, macaques spp. This review focuses on the currently available data that may represent primate malaria as an emerging challenge of zoonotic malaria in Indonesia, the distribution of non-human primates and the malaria parasites it carries, changes in land use and deforestation that impact the habitat and intensifies interaction between the non-human primate and the human which facilitate spill-over of the pathogens. Although available data in Indonesia is very limited, a growing body of evidence indicate that the challenge of zoonotic malaria is immense and alerts to the need to conduct mitigation efforts through multidisciplinary approach involving environmental management, non-human primates conservation, disease management and vector control.

9.
Malar J ; 20(1): 297, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215257

ABSTRACT

BACKGROUND: Recent genome wide analysis studies have identified a strong association between single nucleotide variations within the human ATP2B4 gene and susceptibility to severe malaria. The ATP2B4 gene encodes the plasma membrane calcium ATPase 4 (PMCA4), which is responsible for controlling the physiological level of intracellular calcium in many cell types, including red blood cells (RBCs). It is, therefore, postulated that genetic differences in the activity or expression level of PMCA4 alters intracellular Ca2+ levels and affects RBC hydration, modulating the invasion and growth of the Plasmodium parasite within its target host cell. METHODS: In this study the course of three different Plasmodium spp. infections were examined in mice with systemic knockout of Pmca4 expression. RESULTS: Ablation of PMCA4 reduced the size of RBCs and their haemoglobin content but did not affect RBC maturation and reticulocyte count. Surprisingly, knockout of PMCA4 did not significantly alter peripheral parasite burdens or the dynamics of blood stage Plasmodium chabaudi infection or reticulocyte-restricted Plasmodium yoelii infection. Interestingly, although ablation of PMCA4 did not affect peripheral parasite levels during Plasmodium berghei infection, it did promote slight protection against experimental cerebral malaria, associated with a minor reduction in antigen-experienced T cell accumulation in the brain. CONCLUSIONS: The finding suggests that PMCA4 may play a minor role in the development of severe malarial complications, but that this appears independent of direct effects on parasite invasion, growth or survival within RBCs.


Subject(s)
Disease Resistance/genetics , Malaria/genetics , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasmodium/physiology , Animals , Cell Membrane , Malaria/blood , Malaria/parasitology , Malaria, Cerebral/genetics , Malaria, Cerebral/parasitology , Mice , Mice, Knockout , Plasma Membrane Calcium-Transporting ATPases/metabolism , Plasmodium berghei/physiology , Plasmodium chabaudi/physiology , Plasmodium yoelii/physiology
10.
Malar J ; 20(1): 182, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33849556

ABSTRACT

BACKGROUND: The malaria control programme in Indonesia has successfully brought down malaria incidence in many parts in Indonesia, including Aceh Province. Clinical manifestation of reported malaria cases in Aceh varied widely from asymptomatic, mild uncomplicated to severe and fatal complications. The present study aims to explore the allelic diversity of merozoite surface protein 1 gene (msp1) and msp2 among the Plasmodium falciparum isolates in Aceh Province and to determine their potential correlation with the severity of malaria clinical manifestation. METHODS: Screening of over 500 malaria cases admitted to the hospitals in 11 districts hospital within Aceh Province during 2013-2015, identified 90 cases of P. falciparum mono-infection without any co-morbidity. The subjects were clinically phenotyped and parasite DNA was extracted and polymerase chain reaction (PCR) amplified for the msp1 and msp2 allelic subfamilies. RESULTS: Analysis of clinical manifestation revealed that fever-chill is the most frequent symptom. Based on WHO criteria showed 19 cases were classified as severe and 71 as mild malaria. Analysis of msp1 gene revealed the presence of K1 allele subfamily in 34 subjects, MAD20 in 42 subjects, RO33 in 1 subject, and mixed allelic of K1 + MAD20 in 5 subjects, K1 + RO33 in 4 subjects, and MAD20 + RO33 in 4 subjects. Analysis of msp2 gene revealed 34 subjects carried the FC27 allelic subfamily, 37 subjects carried the 3D7 and 19 subjects carried the mixed FC27 + 3D7. Analysis of multiplicity of infection revealed that msp1 alleles is slightly higher than msp2 with the mean of MOI were 2.69 and 2.27, respectively. Statistical analysis to determine the association between each clinical manifestation and msp1 and msp2 alleles revealed that liver function abnormal value was associated with the msp2 mixed alleles (odds ratio (OR):0.13; 95%CI: 0.03-0.53). Mixed msp1 of K1 + RO33 was associated with severe malaria (OR: 28.50; 95%CI: 1.59-1532.30). CONCLUSION: This study found a strong association between severe malaria in Aceh with subjects carrying the msp1 mixed alleles of K1 and RO33. The liver function abnormal value associated with the msp2 mixed allelic subfamilies. Further study in different geographic areas is recommended.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Malaria, Falciparum/parasitology , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adult , Alleles , Female , Humans , Male , Middle Aged , Young Adult
11.
Asia Pac J Clin Nutr ; 29(Suppl 1): S32-S40, 2020.
Article in English | MEDLINE | ID: mdl-33377745

ABSTRACT

Anemia affects people worldwide and results in increased morbidity and mortality, particularly in children and reproductive-age women. Anemia is caused by an imbalance between red blood cell (RBC) loss and production (erythropoiesis), which can be caused by not only nutritional factors but also non-nutritional factors, such as inflammation and genetics. Understanding the complex and varied etiology of anemia is crucial for developing effective interventions and monitoring anemia control programs. This review focusses on two interrelated nonnutritional causes of anemia: malaria infection and RBC disorders (thalassemia and G6PD deficiency), as well as tuberculosis. According to the Haldane hypothesis, thalassemia occurs as a protective trait toward malaria infection, whereas G6PDd arises in malaria-endemic regions because of positive selection. Indonesia is a malariaendemic region; thus, the frequency of thalassemia and G6PD deficiency is high, which contributes to a greater risk for non-nutritional anemia. As Indonesia is the second global contributor to the newly diagnosed tuberculosis, and active pulmonary tuberculosis patients are more anemic, tuberculosis is also contributes to the increasing risk of anemia. Therefore, to reduce anemia rates in Indonesia, authorities must consider non-nutritional causes that might influence the local incidence of anemia, and apply co-management of endemic infectious disease such as malaria and tuberculosis, and of genetic disease i.e. thalassemia and G6PDd.


Subject(s)
Anemia/etiology , Glucosephosphate Dehydrogenase Deficiency/complications , Malaria/complications , Thalassemia/complications , Tuberculosis/complications , Anemia/genetics , Endemic Diseases , Erythrocytes , Humans , Indonesia
12.
Parasit Vectors ; 12(1): 399, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409374

ABSTRACT

BACKGROUND: Sampling methodologies for mosquitoes that are capable of transmitting vector-borne infectious diseases provide critical information on entomological endpoints. Reliable and meaningful field data is vital to the understanding of basic vector biology as well as disease transmission. Various traps take advantage of different vector behaviors and are inevitably subject to sampling biases. This study represents the first comparison of kelambu traps (KT) to barrier screens (BS), barrier screens with eaves (BSE) and indoor and outdoor human landing catches (HLCs). METHODS: Two trap comparison studies were undertaken. In the first study, mosquitoes were collected in Karama over 26 trapping nights to evaluate the kelambu trap relative to indoor and outdoor HLCs. In the second study, mosquitoes were collected in Karama over 12 trapping nights to compare the kelambu trap, barrier screen, barrier screen with eaves and outdoor HLCs. The kelambu trap, barrier screen and barrier screen with eaves obstruct the flight of mosquitos. HLCs target host-seeking behaviors. RESULTS: There was no significant difference between indoor and outdoor HLCs for overall Anopheles mosquito abundance. All five of the molecularly identified Anopheles species collected by HLCs, An. aconitus, An. barbirostris, An. peditaeniatus, An. vagus and An. tessellatus, are reported as vectors of malaria in Indonesia. The kelambu trap (n = 2736) collected significantly more Anopheles mosquitoes than indoor HLCs (n = 1286; Z = 3.193, P = 0.004), but not the outdoor HLCs (n = 1580; Z = 2.325, P = 0.053). All traps collected statistically similar abundances for the primary species, An. barbirostris. However, both comparison studies found significantly higher abundances for the kelambu trap for several secondary species compared to all other traps: An. nigerriumus, An. parangensis, An. tessellatus and An. vagus. The kelambu trap retained the highest species richness and Gini-Simpson's diversity index for both comparison studies. CONCLUSIONS: This study demonstrates that the kelambu trap collects overall Anopheles abundance and species-specific abundances at statistically similar or higher rates than HLCs in Sulawesi, Indonesia. Therefore, the kelambu trap should be considered as an exposure-free alternative to HLCs for research questions regarding Anopheles species in this malaria endemic region.


Subject(s)
Anopheles , Feeding Behavior , Mosquito Control/methods , Mosquito Vectors , Animals , Entomology/instrumentation , Entomology/methods , Indonesia , Species Specificity
13.
Parasit Vectors ; 11(1): 440, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30064507

ABSTRACT

BACKGROUND: Mosquito sampling methods target different aspects of mosquito behavior and are subject to trap and location specific biases. The barrier screen sampling method was developed and tested to sample free-flying, blood-fed, and host-seeking mosquitoes. During a pilot study, this method was useful in obtaining an unbiased sample of mosquitoes flying between outdoor larval habitats, and sites where blood meals were obtained. However, a relatively small number of blood-fed Anopheles mosquitoes were collected in Indonesia during the pilot study. The sampling method was extended in South Lampung, Indonesia, to enable the collection of blood-fed mosquitoes. This study aimed to intercept mosquitoes flying between human habitations and larval habitats with a barrier screen and to characterize mosquito composition, flight characteristics (direction, height and time), abdominal status, and parity. RESULTS: Barrier screens intercepted 15 different mosquito species in South Lampung: eight Anopheles spp. and seven Culex spp. Species compositions varied among the villages in South Lampung. About 15% of Anopheles spp. caught were blood-fed, of which 28.2% of those tested had fed on humans. This is the first time human blood-fed anophelines have been collected in Indonesia using barrier screens. Blood meals identified included cow, dog, goat, and human, as well as mixed blood meals. Activity of unfed An. subpictus, the primary vector collected, flying towards human habitations peaked between 20:00-12:00 h, with a slow decline in activity until 18:00 h. Unfed and fed An. sundaicus, had a different activity profile compared to An. subpictus. Other species demonstrated varied peak activity times, with earlier activity occurring as a general trend. For the Anopheles mosquitoes collected, 55.5% were collected below 0.5 m and 83.9% were captured resting < 1 m from the ground. Parity dissections enabled age structure by species, which revealed species-specific traits such as nulliparous An. subpictus being more active early in the night relative to An. sundaicus. CONCLUSIONS: This study demonstrates that barrier screens are an effective mosquito sampling method that can be used to gain insights into local mosquito species composition, flight characteristics (direction, height and time), abdominal status, and parity.


Subject(s)
Anopheles/physiology , Behavior, Animal/physiology , Culex/physiology , Abdomen , Animals , Blood , Female , Indonesia , Pilot Projects , Species Specificity , Time Factors
14.
Sensors (Basel) ; 18(7)2018 Jul 02.
Article in English | MEDLINE | ID: mdl-30004457

ABSTRACT

This paper introduces both a hardware and a software system designed to allow low-cost electronic monitoring of social insects using RFID tags. Data formats for individual insect identification and their associated experiment are proposed to facilitate data sharing from experiments conducted with this system. The antennas' configuration and their duty cycle ensure a high degree of detection rates. Other advantages and limitations of this system are discussed in detail in the paper.


Subject(s)
Animal Identification Systems/economics , Bees , Radio Frequency Identification Device/economics , Software/economics , Animals , Bees/classification
15.
Environ Monit Assess ; 190(3): 130, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29427226

ABSTRACT

This paper proposes a method to design the deployment of sensor nodes in a new region where historical data is not available. A number of mobile platforms are simulated to build initial knowledge of the region. Further, an evolutionary algorithm is employed to find the optimum placement of a given number of sensor nodes that best represents the region of interest.


Subject(s)
Algorithms , Environmental Monitoring/methods , Tasmania
16.
Environ Technol ; 39(6): 683-693, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28328313

ABSTRACT

This paper presents an approach to the design of environmental sensor networks (ESN) which aims at providing a robust, fit-for-purpose network with minimum redundancy. A set of near optimum ESN designs is sought using an evolutionary algorithm, which incorporates redundancy and robustness as fitness functions. This work can assist the decision-making process when determining the number of sensor nodes and how the nodes are going to be deployed in the region of interest.


Subject(s)
Algorithms , Environmental Monitoring , Decision Making
17.
Nat Prod Res ; 32(17): 2067-2070, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28768428

ABSTRACT

The rapid emergence of antimalarial drug resistance necessitates a continual effort on novel drug discovery. A cyanobacterium, Spirulina platensis, is a potential antimalarial agent that has been widely consumed as food supplement in the form of crude extract. It is known to possess antiviral, antibacterial and antifungi activities. This study examined the antimalarial activities of several Spirulina formulas against Plasmodium falciparum 3D7, in vitro. The tested Spirulina formulas included commercially available capsule, crude extract and alkaloid fraction. Results showed that all tested formula possessed antimalarial activities with the Spirulina capsule exhibited the highest activities (IC50 = 2.16 µg/mL). Light and electron microscopies revealed interference of the Spirulina with the parasite hemozoin formation. In conclusion, all tested Spirulina formulas and fraction exhibited moderate to high antimalarial activities.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Spirulina/chemistry , Drug Compounding , Hemeproteins/drug effects , Microscopy
18.
Adv Biomed Res ; 5: 104, 2016.
Article in English | MEDLINE | ID: mdl-27376043

ABSTRACT

BACKGROUND: Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. MATERIALS AND METHODS: This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. RESULTS: Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. CONCLUSION: This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters.

19.
Malar J ; 15: 192, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-27060058

ABSTRACT

BACKGROUND: Members of the Anopheles punctulatus group dominate Papua, Indonesia and Papua New Guinea (PNG), with a geographic range that extends south through Vanuatu. An. farauti and An. punctulatus are the presumed major vectors in this region. Although this group of species has been extensively studied in PNG and the southern archipelagoes within their range, their distribution, ecology and vector behaviours have not been well characterized in eastern Indonesia. METHODS: Mosquitoes were collected in five villages in Jayapura province, Papua, Indonesia using human-landing collections, animal-baited tents and backpack aspirators. Mosquitoes were morphologically typed and then molecularly distinguished based on ribosomal ITS2 sequences and tested for Plasmodium falciparum and P. vivax infection using circumsporozoite ELISA and PCR. RESULTS: The presence and vector status of An. farauti 4 in Papua, Indonesia is confirmed here for the first time. The data indicate that this species is entering houses at a rate that increases its potential to come into contact with humans and act as a major malaria vector. An. farauti 4 was also abundant outdoors and biting humans during early evening hours. Other species collected in this area include An. farauti 1, An. hinesorum, An. koliensis, An. punctulatus, and An. tessellatus. Proboscis morphology was highly variable within each species, lending support to the notion that this characteristic is not a reliable indicator to distinguish species within the An. punctulatus group. CONCLUSIONS: The vector composition in Papua, Indonesia is consistent with certain northern areas of PNG, but the behaviours of anophelines sampled in this region, such as early and indoor human biting of An. farauti 4, may enable them to act as major vectors of malaria. Presumed major vectors An. farauti and An. punctulatus were not abundant among these samples. Morphological identification of anophelines in this sample was often inaccurate, highlighting the importance of using molecular analysis in conjunction with morphological investigations to update keys and training tools.


Subject(s)
Anopheles/classification , Anopheles/physiology , Feeding Behavior , Insect Vectors , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Animals , Anopheles/anatomy & histology , Anopheles/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Indonesia , Sequence Analysis, DNA
20.
Malar J ; 15: 218, 2016 Apr 16.
Article in English | MEDLINE | ID: mdl-27083152

ABSTRACT

BACKGROUND: The Indonesian archipelago is endemic for malaria. Although Plasmodium falciparum and P. vivax are the most common causes for malaria cases, P. malariae and P. ovale are also present in certain regions. Zoonotic case of malaria had just became the attention of public health communities after the Serawak study in 2004. However, zoonotic case in Indonesia is still under reported; only one published report of knowlesi malaria in South Kalimantan in 2010. CASE PRESENTATION: A case of Plasmodium knowlesi infection in a worker from a charcoal mining company in Central Kalimantan, Indonesia was described. The worker suffered from fever following his visit to a lowland forest being cut and converted into a new mining location. CONCLUSION: This study confirmed a zoonotic infection using polymerase chain reaction amplification and Sanger sequencing of plasmodial DNA encoding the mitochondrial cytochrome c oxidase subunit I (mtCOI).


Subject(s)
Malaria/diagnosis , Plasmodium knowlesi/isolation & purification , Zoonoses/diagnosis , Animals , Borneo , Electron Transport Complex IV/analysis , Electron Transport Complex IV/genetics , Humans , Indonesia , Malaria/parasitology , Male , Middle Aged , Mitochondrial Proteins/analysis , Mitochondrial Proteins/genetics , Phylogeny , Plasmodium knowlesi/genetics , Polymerase Chain Reaction , Protozoan Proteins/analysis , Protozoan Proteins/genetics , Sequence Analysis, DNA , Zoonoses/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...