Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 2392, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765080

ABSTRACT

After ovulation, the mitochondrial enzyme CYP11A1 cleavage the cholesterol into pregnenolone for progesterone synthesis, suggesting that mitochondrial dynamics play a vital role in the female reproductive system. The changes in the mitochondria dynamics throughout the ovarian cycle have been reported in literature, but the correlation to its role in the ovarian cycle remains unclear. In this study, mitochondrial fusion promotor, M1, was used to study the impact of mitochondria dynamics in the female reproductive system. Our results showed that M1 treatment in mice can lead to the disruptions of estrous cycles in vagina smears. The decrease in serum LH was recorded in the animal. And the inhibitions of progesterone secretion and ovulations were observed in ovarian culture. Although no significant changes in mitochondrial networks were observed in the ovaries, significant up-regulation of mitochondrial respiratory complexes was revealed in M1 treatments through transcriptomic analysis. In contrast to the estrogen and steroid biosynthesis up-regulated in M1, the molecules of extracellular matrix, remodeling enzymes, and adhesion signalings were decreased. Collectively, our study provides novel targets to regulate the ovarian cycles through the mitochondria. However, more studies are still necessary to provide the functional connections between mitochondria and the female reproductive systems.


Subject(s)
Mitochondrial Dynamics , Progesterone , Mice , Female , Animals , Proestrus , Estrous Cycle/physiology , Ovary , Estradiol
2.
PeerJ ; 10: e13867, 2022.
Article in English | MEDLINE | ID: mdl-35990905

ABSTRACT

Aims: Studies have observed changes in autophagic flux in the adipose tissue of type 2 diabetes patients with obesity. However, the role of autophagy in obesity-induced insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from adipose tissue to clarify whether altered autophagy-mediated HFD induces insulin resistance, and to elucidate the possible mechanisms in autophagy-regulated adipose insulin sensitivity. Methods: Eight-week-old male C57BL/6 mice were fed with HFD to confirm the effect of HFD on autophagy and insulin signaling transduction from adipose tissue. Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50 nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and 24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy in insulin signaling transduction. Results: The HFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon expression, and C/EBP homologous protein (CHOP) expression, yet the insulin capability to induce Akt (Ser473) and GSK3ß (Ser9) phosphorylation were reduced. PHLPP1 and PTEN remain unchanged after CQ injection. In differentiated 3T3-L1 adipocytes treated with CQ, although the amount of phospho-Akt stimulated by insulin in the CQ-treated group was significantly lower, CHOP expressions and cleaved caspase-3 were increased and bafilomycin A1 induced less accumulation of LC3-II protein. Conclusion: Long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not affect insulin signaling transduction via phosphatase expression but indirectly causes insulin resistance through ER stress or apoptosis.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Male , Animals , Diet, High-Fat/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Adipose Tissue/metabolism , Obesity/drug therapy , Insulin/pharmacology , Autophagy
3.
Animals (Basel) ; 12(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35804629

ABSTRACT

White spot syndrome virus (WSSV) has been reported to cause severe economic loss in the shrimp industry. With WSSV being a large virus still under investigation, the 3D structure of its assembly remains unclear. The current study was planned to clarify the 3D structures of WSSV infections in the cell nucleus of red swamp crayfish (Procambarus clarkii). The samples from various tissues were prepared on the seventh day post-infection. The serial sections of the intestinal tissue were obtained for electron tomography after the ultrastructural screening. After 3D reconstruction, the WSSV-associated structures were further visualized, and the expressions of viral proteins were confirmed with immuno-gold labeling. While the pairs of sheet-like structures with unknown functions were observed in the nucleus, the immature virions could be recognized by the core units of nucleocapsids on a piece of the envelope. The maturation of the particle could include the elongation of core units and the filling of empty nucleocapsids with electron-dense materials. Our observations may bring to light a possible order of WSSV maturation in the cell nucleus of the crayfish, while more investigations remain necessary to visualize the detailed viral-host interactions.

4.
Sci Rep ; 11(1): 15564, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330986

ABSTRACT

In mammalian ovaries, mitochondria are integral sites of energy production and steroidogenesis. While shifts in cellular activities and steroidogenesis are well characterized during the differentiation of large luteal cells in folliculogenesis and luteal formation, mitochondrial dynamics during this process have not been previously evaluated. In this study, we collected ovaries containing primordial follicles, mature follicles, corpus hemorrhagicum, or corpus luteum from goats at specific times in the estrous cycle. Enzyme histochemistry, ultrastructural observations, and 3D structural analysis of serial sections of mitochondria revealed that branched mitochondrial networks were predominant in follicles, while spherical and tubular mitochondria were typical in large luteal cells. Furthermore, the average mitochondrial diameter and volume increased from folliculogenesis to luteal formation. In primordial follicles, the signals of cytochrome c oxidase and ATP synthase were undetectable in most cells, and the large luteal cells from the corpus hemorrhagicum also showed low enzyme signals and content when compared with granulosa cells in mature follicles or large luteal cells from the corpus luteum. Our findings suggest that the mitochondrial enlargement could be an event during folliculogenesis and luteal formation, while the modulation of mitochondrial morphology and respiratory enzyme expressions may be related to tissue remodeling during luteal formation.


Subject(s)
Lipogenesis/physiology , Luteal Cells/metabolism , Animals , Female , Goats , Mitochondrial Dynamics/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...