Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34886331

ABSTRACT

(1) Background: Neglected occupational health and safety aspects in batik industries cause their workers to have an increased risk of lead exposure. The effect of occupational lead exposure on neurocognitive performance is inconclusive. Therefore, we conducted an observational study to examine the difference in simple reaction time between lead-exposed batik workers and non-exposed referents. (2) Methods: This cross-sectional study was conducted in seven batik enterprises in Lendah District, Indonesia, excluding workers with medical conditions impairing reaction time. Simple reaction time tests were conducted using an online tool. Two-way model ANCOVAs examined interactions between gender and job types on the mean differences in reaction time. (3) Results: After controlling for age and body mass index, we observed longer reaction times among lead-exposed batik workers than non-exposed referents with an adjusted mean difference of 0.19 (95% CI: 0.016-0.368) seconds. A more prominent detrimental effect of lead exposure on reaction time among female workers than among male workers was observed. (4) Conclusions: Our results suggest that occupational lead exposure could contribute to longer reaction time, notably among female workers. Thus, occupational health and safety precautions are vital to protect batik workers and preserve their important contributions to cultural heritage.


Subject(s)
Lead/toxicity , Occupational Diseases , Occupational Exposure , Occupational Health , Cross-Sectional Studies , Female , Humans , Male , Occupational Exposure/statistics & numerical data , Reaction Time
2.
Front Pharmacol ; 12: 621894, 2021.
Article in English | MEDLINE | ID: mdl-33815106

ABSTRACT

Background: Kidney fibrosis is the common final pathway of chronic kidney disease (CKD), and is characterized by inflammation, mesenchymal transition with myofibroblast formation and epithelial to mesenchymal transition (EMT). Centella asiatia (CeA) is an herb that has a reno-protective effect. However, its mechanism of action in kidney fibrosis has not been elucidated. Aim: To elucidate the effect of CeA in amelioration of kidney fibrosis in a unilateral ureteral obstruction (UUO) model and focus on mesenchymal transition and inflammation. Methods: Unilateral ureteral obstruction was performed in male Swiss-background mice (age: 2-3 months, weight: 30-40 g, UUO group n = 6) to induce kidney fibrosis. Two doses of CeA extract with oral administration, 210 and 840 mg/kg body weight were added in UUO (U+C210 and U+C840 groups, each n = 6). The sham operation procedure was performed for the control group (SO, n = 6). The mice were euthanized at day-14 after operation. Tubular injury and interstitial fibrosis area fractions in kidney tissues of the mice were quantified based on periodic acid-Schiff (PAS) and Sirius Red (SR) staining. Immunostaining was performed for examination of fibroblast (PDGFR-ß), myofibroblast (α-SMA), Monocyte Chemoattractant Protein-1 (MCP-1) and macrophage (CD68), meanwhile double immunofluorescence was performed with PDGFR-ß and α-SMA. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to examine mRNA expression of TGF-ß, Collagen-1, Snail, E-cadherin, vimentin, fibroblast-specific protein 1 (FSP-1), CD68, toll-like receptor 4 (TLR4), and MCP-1. Results: We observed a significantly higher interstitial fibrosis area fraction and tubular injury (p < 0.001) with fibroblast expansion and myofibroblast formation in the UUO group than in the SO group. These findings were associated with higher mRNA expression of TGF-ß, Collagen-1, Snail, vimentin, FSP-1, CD68, TLR4, and MCP-1 and lower mRNA expression of E-cadherin. The U+C840 group had a significantly lower tubular injury score and interstitial fibrosis area fraction, which associated with downregulation of mRNA expression of TGF-ß, Collagen-1, Snail, vimentin, FSP-1, CD68, TLR4, and MCP-1, with upregulation of mRNA expression of E-cadherin. Immunostaining observation revealed the U+C840 group demonstrated reduction of macrophage infiltration and myofibroblast expansion. Conclusion: CeA treatment with dose-dependently ameliorates mesenchymal transition and inflammation in kidney fibrosis in mice.

3.
Kobe J Med Sci ; 65(4): E138-E143, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32201429

ABSTRACT

The incidence rate of Acute Kidney Injury (AKI) gets escalated each year. Kidney ischemia/reperfusion injury (IR injury) is the main cause of AKI after major cardiovascular surgery, trauma, or kidney transplantation. Reperfusion is considered essential for ischemic tissue. However, the evidence revealed that reperfusion itself has impact in cellular destruction. Vitamin D is not only known as calcium regulating hormone, but also as renoprotective agent. This study aimed to investigate the effect of vitamin D treatment on kidney IR injury in mice. Kidney IR injury was performed using 30 minutes of bilateral clamping of renal pedicles, then released in male Swiss Webster mice (3 months, 30-40 grams, n=20), which were divided into three groups: sham operation (SO) group, IR injury (IRI) group, and IR injury with 0.25 µg/ kg body weight of vitamin D treatment (IR7+VD). Mice were terminated at day 7 post operation, kidneys were harvested and used for paraffin making, immunostaining and RNA extraction. Tubular injury was quantified based on Periodic Acid-Schiff's (PAS) staining. Immunostaining was done for quantification of macrophage (CD68) and myofibroblast (α-SMA). Reverse Transcriptase PCR (RT-PCR) was done to examine Monocyte Chemoattractant Protein-1 (MCP-1) and Toll-like Receptor 4 (TLR4) mRNA expression. Kidney IR injury induced significant increase of tubular injury, which was associated with higher myofibroblast and macrophage number. Meanwhile, Vitamin D treatment significantly reduced tubular, myofibroblast and macrophage number. RTPCR revealed reduction of TLR4 and MCP-1 mRNA expressions after Vitamin D treatment (p<0.05 vs IR group). Vitamin D ameliorates kidney IR injury through reducing inflammation and myofibroblast formation.


Subject(s)
Inflammation/prevention & control , Kidney/blood supply , Myofibroblasts/drug effects , Reperfusion Injury/prevention & control , Vitamin D/therapeutic use , Animals , Chemokine CCL2/genetics , Kidney/drug effects , Macrophages/drug effects , Male , Mice , Toll-Like Receptor 4/genetics , Vitamin D/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...