Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Front Oncol ; 14: 1367231, 2024.
Article in English | MEDLINE | ID: mdl-38706608

ABSTRACT

Stage II colon cancer (CC) encompasses a heterogeneous group of patients with diverse survival experiences: 87% to 58% 5-year relative survival rates for stages IIA and IIC, respectively. While stage IIA patients are usually spared the adjuvant chemotherapy, some of them relapse and may benefit from it; thus, their timely identification is crucial. Current gene expression signatures did not specifically target this group nor did they find their place in clinical practice. Since processes at invasion front have also been linked to tumor progression, we hypothesize that aside from bulk tumor features, focusing on the invasion front may provide additional clues for this stratification. A retrospective matched case-control collection of 39 stage IIA microsatellite-stable (MSS) untreated CCs was analyzed to identify prognostic gene expression-based signatures. The endpoint was defined as relapse within 5 years vs. no relapse for at least 6 years. From the same tumors, three different classifiers (bulk tumor, invasion front, and constrained baseline on bulk tumor) were developed and their performance estimated. The baseline classifier, while the weakest, was validated in two independent data sets. The best performing signature was based on invasion front profiles [area under the receiver operating curve (AUC) = 0.931 (0.815-1.0)] and contained genes associated with KRAS pathway activation, apical junction complex, and heme metabolism. Its combination with bulk tumor classifier further improved the accuracy of the predictions.

2.
Elife ; 122023 11 13.
Article in English | MEDLINE | ID: mdl-37956043

ABSTRACT

Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molecular subtypes were associated with specific tumor morphological patterns representing tumor subregions. We hypothesize that whole-tumor molecular descriptors depend on the morphological heterogeneity with significant impact on current molecular predictors. We investigated intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links between gene expression and tumor morphology represented by six morphological patterns (morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified morphotype-specific gene expression profiles and molecular programs and differences in their cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differentiation of epithelial cells were the main drivers of the observed disparities with activation of EMT and TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and predictive signatures were examined to study their behavior across morphotypes. Most exhibited important morphotype-dependent variability within same tumor sections, with regional predictions often contradicting the whole-tumor classification. The results show that morphotype-based tumor sampling allows the detection of molecular features that would otherwise be distilled in whole tumor profile, while maintaining histopathology context for their interpretation. This represents a practical approach at improving the reproducibility of expression profiling and, by consequence, of gene-based classifiers.


Subject(s)
Colorectal Neoplasms , Humans , Reproducibility of Results , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling/methods , Transcriptome , Gene Expression Regulation, Neoplastic
3.
BMC Microbiol ; 23(1): 202, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37525095

ABSTRACT

BACKGROUND: Indoor dust particles are an everyday source of human exposure to microorganisms and their inhalation may directly affect the microbiota of the respiratory tract. We aimed to characterize the changes in human nasopharyngeal bacteriome after short-term exposure to indoor (workplace) environments. METHODS: In this pilot study, nasopharyngeal swabs were taken from 22 participants in the morning and after 8 h of their presence at the workplace. At the same time points, indoor dust samples were collected from the participants' households (16 from flats and 6 from houses) and workplaces (8 from a maternity hospital - NEO, 6 from a pediatric hospital - ENT, and 8 from a research center - RCX). 16S rRNA sequencing analysis was performed on these human and environmental matrices. RESULTS: Staphylococcus and Corynebacterium were the most abundant genera in both indoor dust and nasopharyngeal samples. The analysis indicated lower bacterial diversity in indoor dust samples from flats compared to houses, NEO, ENT, and RCX (p < 0.05). Participants working in the NEO had the highest nasopharyngeal bacterial diversity of all groups (p < 0.05). After 8 h of exposure to the workplace environment, enrichment of the nasopharynx with several new bacterial genera present in the indoor dust was observed in 76% of study participants; however, no significant changes were observed at the level of the nasopharyngeal bacterial diversity (p > 0.05, Shannon index). These "enriching" bacterial genera overlapped between the hospital workplaces - NEO and ENT but differed from those in the research center - RCX. CONCLUSIONS: The results suggest that although the composition of nasopharyngeal bacteriome is relatively stable during the day. Short-term exposure to the indoor environment can result in the enrichment of the nasopharynx with bacterial DNA from indoor dust; the bacterial composition, however, varies by the indoor workplace environment.


Subject(s)
Air Pollution, Indoor , Dust , Pregnancy , Child , Humans , Female , Dust/analysis , Pilot Projects , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Bacteria/genetics , Nasopharynx , Air Pollution, Indoor/analysis
4.
Gastroenterology ; 165(3): 582-599.e8, 2023 09.
Article in English | MEDLINE | ID: mdl-37263306

ABSTRACT

BACKGROUND & AIMS: Fecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis. METHODS: A total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples. RESULTS: Twenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79-0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92-1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71-0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients. CONCLUSIONS: Our comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies.


Subject(s)
Adenoma , Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/analysis , Cross-Sectional Studies , Biomarkers, Tumor/analysis , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Sequence Analysis, RNA , Adenoma/diagnosis , Adenoma/genetics
5.
Article in English | MEDLINE | ID: mdl-35533547

ABSTRACT

The physiology of males and females can be vastly different, complicating interpretation of toxicological and physiological data. The objectives of this study were to elucidate the sex differences in the microbiome-gastrointestinal (GI) transcriptome of adult zebrafish. We compared microbial composition and diversity in both males and females fed the same diet and housed in the same environment. There were no sex-specific differences in weight gain nor gastrointestinal morphology based on histopathology. There was no difference in gut microbial diversity, richness (Shannon and Chao1 index) nor predicted functional composition of the microbiome between males and females. Prior to post-hoc correction, male zebrafish showed higher abundance for the bacterial families Erythrobacteraceae and Lamiaceae, both belonging to the phyla Actinobacteria and Proteobacteria. At the genus level, Lamia and Altererythrobacter were more dominant in males and an unidentified genus in Bacteroidetes was more abundant in females. There were 16 unique differentially expressed transcripts in the gastrointestinal tissue between male and female zebrafish (FDR corrected, p < 0.05). Relative to males, the mRNA expression for trim35-9, slc25a48, chchd3b, csad, and hsd17b3 were lower in female GI while cyp2k6, adra2c, and bckdk were higher in the female GI. Immune and lipid-related gene network expression differed between the sexes (i.e., cholesterol export and metabolism) as well as networks related to gastric motility, gastrointestinal system absorption and digestion. Such data provide clues as to putative differences in gastrointestinal physiology between male and female zebrafish. This study identifies host-transcriptome differences that can be considered when interpreting the microgenderome of zebrafish in studies investigating GI physiology and toxicology of fishes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Apoptosis Regulatory Proteins , Bacteria , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Male , Zebrafish/genetics
6.
Schizophr Bull ; 48(1): 190-198, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34357384

ABSTRACT

Astrocytes are the most abundant cell type in the human brain and are important regulators of several critical cellular functions, including synaptic transmission. Although astrocytes are known to play a central role in the etiology and pathophysiology of schizophrenia, little is known about their potential involvement in clinical response to the antipsychotic clozapine. Moreover, astrocytes display a remarkable degree of morphological diversity, but the potential contribution of astrocytic subtypes to disease biology and drug response has received little attention. Here, we used state-of-the-art human induced pluripotent stem cell (hiPSC) technology to derive a morphological subtype of astrocytes from healthy individuals and individuals with schizophrenia, including responders and nonresponders to clozapine. Using functional assays and transcriptional profiling, we identified a distinct gene expression signature highly specific to schizophrenia as shown by disease association analysis of more than 10 000 diseases. We further found reduced levels of both glutamate and the NMDA receptor coagonist d-serine in subtype astrocytes derived from schizophrenia patients, and that exposure to clozapine only rescued this deficiency in cells from clozapine responders, providing further evidence that d-serine in particular, and NMDA receptor-mediated glutamatergic neurotransmission in general, could play an important role in disease pathophysiology and clozapine action. Our study represents a first attempt to explore the potential contribution of astrocyte diversity to schizophrenia pathophysiology using a human cellular model. Our findings suggest that specialized subtypes of astrocytes could be important modulators of disease pathophysiology and clinical drug response, and warrant further investigations.


Subject(s)
Antipsychotic Agents/pharmacology , Astrocytes/metabolism , Clozapine/pharmacology , Glutamic Acid/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Serine/metabolism , Adult , Female , Humans , Induced Pluripotent Stem Cells , Male , Middle Aged
7.
Front Microbiol ; 12: 665743, 2021.
Article in English | MEDLINE | ID: mdl-34777268

ABSTRACT

National screening programs use dried blood specimens to detect metabolic disorders or aberrant protein functions that are not clinically evident in the neonatal period. Similarly, gut microbiota metabolites and immunological acute-phase proteins may reveal latent immune aberrations. Microbial metabolites interact with xenobiotic receptors (i.e., aryl hydrocarbon and pregnane-X) to maintain gastrointestinal tissue health, supported by acute-phase proteins, functioning as sensors of microbial immunomodulation and homeostasis. The delivery (vaginal or cesarean section) shapes the microbial colonization, which substantially modulates both the immune system's response and mucosal homeostasis. This study profiled microbial metabolites of the kynurenine and tryptophan pathway and acute-phase proteins in 134 neonatal dried blood specimens. We newly established neonatal blood levels of microbial xenobiotic receptors ligands (i.e., indole-3-aldehyde, indole-3-butyric acid, and indole-3-acetamide) on the second day of life. Furthermore, we observed diverse microbial metabolic profiles in neonates born vaginally and via cesarean section, potentially due to microbial immunomodulatory influence. In summary, these findings suggest the supportive role of human gut microbiota in developing and maintaining immune system homeostasis.

8.
Cancers (Basel) ; 13(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34638284

ABSTRACT

Long-term dysbiosis of the gut microbiome has a significant impact on colorectal cancer (CRC) progression and explains part of the observed heterogeneity of the disease. Even though the shifts in gut microbiome in the normal-adenoma-carcinoma sequence were described, the landscape of the microbiome within CRC and its associations with clinical variables remain under-explored. We performed 16S rRNA gene sequencing of paired tumour tissue, adjacent visually normal mucosa and stool swabs of 178 patients with stage 0-IV CRC to describe the tumour microbiome and its association with clinical variables. We identified new genera associated either with CRC tumour mucosa or CRC in general. The tumour mucosa was dominated by genera belonging to oral pathogens. Based on the tumour microbiome, we stratified CRC patients into three subtypes, significantly associated with prognostic factors such as tumour grade, sidedness and TNM staging, BRAF mutation and MSI status. We found that the CRC microbiome is strongly correlated with the grade, location and stage, but these associations are dependent on the microbial environment. Our study opens new research avenues in the microbiome CRC biomarker detection of disease progression while identifying its limitations, suggesting the need for combining several sampling sites (e.g., stool and tumour swabs).

10.
Front Nutr ; 8: 783302, 2021.
Article in English | MEDLINE | ID: mdl-35071294

ABSTRACT

Background and Aim: Plant-based diets are associated with potential health benefits, but the contribution of gut microbiota remains to be clarified. We aimed to identify differences in key features of microbiome composition and function with relevance to metabolic health in individuals adhering to a vegan vs. omnivore diet. Methods: This cross-sectional study involved lean, healthy vegans (n = 62) and omnivore (n = 33) subjects. We assessed their glucose and lipid metabolism and employed an integrated multi-omics approach (16S rRNA sequencing, metabolomics profiling) to compare dietary intake, metabolic health, gut microbiome, and fecal, serum, and urine metabolomes. Results: The vegans had more favorable glucose and lipid homeostasis profiles than the omnivores. Long-term reported adherence to a vegan diet affected only 14.8% of all detected bacterial genera in fecal microbiome. However, significant differences in vegan and omnivore metabolomes were observed. In feces, 43.3% of all identified metabolites were significantly different between the vegans and omnivores, such as amino acid fermentation products p-cresol, scatole, indole, methional (lower in the vegans), and polysaccharide fermentation product short- and medium-chain fatty acids (SCFAs, MCFAs), and their derivatives (higher in the vegans). Vegan serum metabolome differed markedly from the omnivores (55.8% of all metabolites), especially in amino acid composition, such as low BCAAs, high SCFAs (formic-, acetic-, propionic-, butyric acids), and dimethylsulfone, the latter two being potential host microbiome co-metabolites. Using a machine-learning approach, we tested the discriminative power of each dataset. Best results were obtained for serum metabolome (accuracy rate 91.6%). Conclusion: While only small differences in the gut microbiota were found between the groups, their metabolic activity differed substantially. In particular, we observed a significantly different abundance of fermentation products associated with protein and carbohydrate intakes in the vegans. Vegans had significantly lower abundances of potentially harmful (such as p-cresol, lithocholic acid, BCAAs, aromatic compounds, etc.) and higher occurrence of potentially beneficial metabolites (SCFAs and their derivatives).

11.
Environ Pollut ; 268(Pt B): 115715, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33069042

ABSTRACT

Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.


Subject(s)
Microbiota , Selenium , Animals , Dieldrin/toxicity , Gastrointestinal Tract , Heme , Male , RNA, Ribosomal, 16S , Zebrafish
12.
Oncoimmunology ; 9(1): 1774298, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32934879

ABSTRACT

Accumulating evidence demonstrates the decisive role of the gut microbiota in determining the effectiveness of anticancer therapeutics such as immunogenic chemotherapy or immune checkpoint blockade in preclinical tumor models, as well as in cancer patients. In synthesis, it appears that a normal intestinal microbiota supports therapeutic anticancer responses, while a dysbiotic microbiota that lacks immunostimulatory bacteria or contains overabundant immunosuppressive species causes treatment failure. These findings have led to the design of clinical trials that evaluate the capacity of modulation of the gut microbiota to synergize with treatment and hence limit tumor progression. Along the lines of this Trial Watch, we discuss the rationale for harnessing the gut microbiome in support of cancer therapy and the progress of recent clinical trials testing this new therapeutic paradigm in cancer patients.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Dysbiosis , Humans , Immunotherapy , Neoplasms/drug therapy , Treatment Outcome
13.
Cancers (Basel) ; 12(4)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326511

ABSTRACT

Biomarker-guided treatment for patients with colon cancer is needed. We tested ABCG2 and topoisomerase 1 (TOP1) mRNA expression as predictive biomarkers for irinotecan benefit in the PETACC-3 patient cohort. The present study included 580 patients with mRNA expression data from Stage III colon cancer samples from the PETACC-3 study, which randomized the patients to Fluorouracil/leucovorin (5FUL) +/- irinotecan. The primary end-points were recurrence free survival (RFS) and overall survival (OS). Patients were divided into one group with high ABCG2 expression (above median) and low TOP-1 expression (below 75 percentile) ("resistant") (n = 216) and another group including all other combinations of these two genes ("sensitive") (n = 364). The rationale for the cut-offs were based on the distribution of expression levels in the PETACC-3 Stage II set of patients, where ABCG2 was unimodal and TOP1 was bimodal with a high expression level mode in the top quarter of the patients. Cox proportional hazards regression was used to estimate the hazard ratios and the association between variables and end-points and log-rank tests to assess the statistical significance of differences in survival between groups. Kaplan-Meier estimates of the survival functions were used for visualization and estimation of survival rates at specific time points. Significant differences were found for both RFS (Hazard ratio (HR): 0.63 (0.44-0.92); p = 0.016) and OS (HR: 0.60 (0.39-0.93); p = 0.02) between the two biomarker groups when the patients received FOLFIRI (5FUL+irinotecan). Considering only the Microsatellite Stable (MSS) and Microsatellite Instability-Low (MSI-L) patients (n = 470), the differences were even more pronounced. In contrast, no significant differences were observed between the groups when patients received 5FUL alone. This study shows that the combination of ABCG2 and TOP1 gene expression significantly divided the Stage III colon cancer patients into two groups regarding benefit from adjuvant treatment with FOLFIRI but not 5FUL.

14.
Environ Sci Technol ; 54(9): 5719-5728, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32255618

ABSTRACT

To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Adaptive Immunity , Animals , Female , Humans , Male , Zebrafish
15.
Probiotics Antimicrob Proteins ; 12(2): 343-350, 2020 06.
Article in English | MEDLINE | ID: mdl-31069717

ABSTRACT

Colinfant New Born (CNB) is an orally administered probiotic preparation containing the Escherichia coli strain A0 34/86, which is specially marketed for use in newborns and infants. Although the impact of different probiotics on the composition of the human gut microbiota has been previously described, the effects of E. coli probiotic consumption during infancy on the development of intestinal microbiota are not known. The effect of oral administration of CNB on the Enterobacteriaceae population was mapped using 16S rRNA gene sequencing in DNA samples isolated from the stools of one infant collected at 177 different time points during the first year of life. E. coli strains turnover was analyzed based on the detection of 26 genetic determinants, phylogroups, and pulsed-field gel electrophoresis (PFGE) analysis. Administration of CNB during the second and third month of life introduced the Escherichia genus to the infant's intestinal tract, and Escherichia became dominant among the Enterobacteriaceae family (p < 0.01). Genetic determinants, typical for probiotic E. coli A0 34/86 strain, were detected on the first day after application of CNB and persisted all year. In addition, nine transient E. coli strains were identified; these strains harbored different genetic determinants and showed different PFGE profiles. Transient strains were detected from 2 to 24 days in the stool samples. The first Escherichia colonizer originated from the application of the CNB probiotic preparation. Probiotic E. coli A0 34/86 successfully colonized the intestinal tract of an infant and became resident during the first year of life.


Subject(s)
Escherichia coli , Gastrointestinal Microbiome , Intestines/microbiology , Probiotics/administration & dosage , Humans , Infant , Infant, Newborn
16.
JPEN J Parenter Enteral Nutr ; 44(1): 105-118, 2020 01.
Article in English | MEDLINE | ID: mdl-31032975

ABSTRACT

BACKGROUND: The gut microbiome and metabolome may significantly influence clinical outcomes in patients with short bowel syndrome (SBS). The study aimed to describe specific metagenomic/metabolomics profiles of different SBS types and to identify possible therapeutic targets. METHODS: Fecal microbiome (FM), volatile organic compounds (VOCs), and bile acid (BA) spectrum were analyzed in parenteral nutrition (PN)-dependent SBS I, SBS II, and PN-independent (non-PN) SBS patients. RESULTS: FM in SBS I, SBS II, and non-PN SBS shared characteristic features (depletion of beneficial anaerobes, high abundance of Lactobacilaceae and Enterobacteriaceae). SBS I patients were characterized by the abundance of oxygen-tolerant microrganisms and depletion of strict anaerobes. Non-PN SBS subjects showed markers of partial FM normalization. FM dysbiosis was translated into VOC and BA profiles characteristic for each SBS cohort. A typical signature of all SBS patients comprised high saturated aldehydes and medium-chain fatty acids and reduced short-chain fatty acid (SCFA) content. Particularly, SBS I and II exhibited low protein metabolism intermediate (indole, p-cresol) content despite the hypothetical presence of relevant metabolism pathways. Distinctive non-PN SBS marker was high phenol content. SBS patients' BA fecal spectrum was enriched by chenodeoxycholic and deoxycholic acids and depleted of lithocholic acid. CONCLUSIONS: Environmental conditions in SBS gut significantly affect FM composition and metabolic activity. The common feature of diverse SBS subjects is the altered VOC/BA profile and the lack of important products of microbial metabolism. Strategies oriented on the microbiome/metabolome reconstitution and targeted delivery of key compounds may represent a promising therapeutic strategy in SBS patients.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Metabolome , Short Bowel Syndrome/microbiology , Bile Acids and Salts/analysis , Dysbiosis , Feces/microbiology , Humans , Parenteral Nutrition , Volatile Organic Compounds/analysis
17.
Sci Rep ; 9(1): 13837, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554833

ABSTRACT

Many studies correlate changes in human gut microbiome with the onset of various diseases, mostly by 16S rRNA gene sequencing. Setting up the optimal sampling and DNA isolation procedures is crucial for robustness and reproducibility of the results. We performed a systematic comparison of several sampling and DNA isolation kits, quantified their effect on bacterial gDNA quality and the bacterial composition estimates at all taxonomic levels. Sixteen volunteers tested three sampling kits. All samples were consequently processed by two DNA isolation kits. We found that the choice of both stool sampling and DNA isolation kits have an effect on bacterial composition with respect to Gram-positivity, however the isolation kit had a stronger effect than the sampling kit. The proportion of bacteria affected by isolation and sampling kits was larger at higher taxa levels compared to lower taxa levels. The PowerLyzer PowerSoil DNA Isolation Kit outperformed the QIAamp DNA Stool Mini Kit mainly due to better lysis of Gram-positive bacteria while keeping the values of all the other assessed parameters within a reasonable range. The presented effects need to be taken into account when comparing results across multiple studies or computing ratios between Gram-positive and Gram-negative bacteria.


Subject(s)
Feces/microbiology , Gram-Negative Bacteria/classification , Gram-Positive Bacteria/classification , High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal, 16S/genetics , Adult , DNA, Bacterial/genetics , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/isolation & purification , Healthy Volunteers , Humans , Middle Aged , Phylogeny , Reagent Kits, Diagnostic , Reproducibility of Results , Sequence Analysis, DNA , Young Adult
18.
Klin Onkol ; 32(4): 261-269, 2019.
Article in English | MEDLINE | ID: mdl-31426641

ABSTRACT

BACKGROUND: The clinical, histopathological, and molecular characteristics of colorectal cancer vary considerably. Factors associated with the heterogeneity of this disease and with understanding the effects of heterogeneity on disease progression and response to therapy are critical for the better stratification of patients and the development of new therapeutic methods. Although studies have focused mainly on tumor molecular profiling, current molecular predictive and prognostic factors are relevant to specific groups of colorectal cancer patients and are mostly used to predict the applicability of targeted biological agents rather than to predict their benefits. Molecular profiling fails to capture aspects important for tumor growth and aggressiveness, including the tumor microenvironment. The gut microbiome, consisting of specific communities of all commensal, symbiotic, and pathogenic microorganisms, has been shown to have a significant impact on the development of many diseases, including Crohns disease, type II diabetes, and obesity. Recent studies have indicated that long-term dysbiosis of the intestinal microflora can influence the development and progression of colorectal cancer, as well as tumor aggressiveness and response to treatment. CONCLUSION: This review article summarizes current knowledge of the gut microbiome in colorectal cancer, including the various mechanisms by which the gut microbiome affects the intestinal wall, thereby contributing to the development and progression of colorectal cancer. This work was supported by Ministry of Health of the Czech Republic (project AZV 16-31966A), project of Ministry of Education, Youth and Sports of the Czech Republic - NPU I - LO1413 a Ministry of Health of the Czech Republic - RVO (MMCI, 00209805). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 15. 4. 2019 Accepted: 17. 6. 2019.


Subject(s)
Colorectal Neoplasms/etiology , Gastrointestinal Microbiome/physiology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Dysbiosis/complications , Dysbiosis/microbiology , Humans
19.
Cell Rep ; 28(3): 832-843.e7, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315058

ABSTRACT

Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotype-based classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of disease-regulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification.


Subject(s)
Breast Neoplasms/classification , CDC2 Protein Kinase/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proteome/analysis , Proteomics/methods , Receptor, ErbB-2/metabolism , Tandem Mass Spectrometry/methods , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CDC2 Protein Kinase/genetics , Female , High-Throughput Screening Assays , Humans , Phosphoric Monoester Hydrolases/genetics , Proteome/metabolism , Receptor, ErbB-2/genetics , Receptors, Estrogen/metabolism
20.
BMC Cancer ; 19(1): 687, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31307428

ABSTRACT

BACKGROUND: In a prospective study with long-term follow-up, we analyzed circulating T cell subsets in patients with metastatic colorectal cancer (mCRC) in the context of primary tumor sidedness, KRAS status, and clinical outcome. Our primary goal was to investigate whether baseline levels of circulating T cell subsets serve as a potential biomarker of clinical outcome of mCRC patients treated with an anti-VEGF-based regimen. METHODS: The study group consisted of 36 patients with colorectal adenocarcinoma who started first-line chemotherapy with bevacizumab for metastatic disease. We quantified T cell subsets including Tregs and CD8+ T cells in the peripheral blood prior to therapy initiation. Clinical outcome was evaluated as progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). RESULTS: 1) mCRC patients with KRAS wt tumors had higher proportions of circulating CD8+ cytotoxic T cells among all T cells but also higher measures of T regulatory (Treg) cells such as absolute count and a higher proportion of Tregs in the CD4+ subset. 2) A low proportion of circulating Tregs among CD4+ cells, and a high CD8:Treg ratio at initiation of VEGF-targeting therapy, were associated with favorable clinical outcome. 3) In a subset of patients with primarily right-sided mCRC, superior PFS and OS were observed when the CD8:Treg ratio was high. CONCLUSIONS: The baseline level of circulating immune cells predicts clinical outcome of 1st-line treatment with the anti-VEGF angio/immunomodulatory agent bevacizumab. Circulating immune biomarkers, namely the CD8:Treg ratio, identified patients in the right-sided mCRC subgroup with favorable outcome following treatment with 1st-line anti-VEGF treatment.


Subject(s)
Adenocarcinoma/drug therapy , Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Colorectal Neoplasms/drug therapy , Neoplasm Metastasis/drug therapy , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Regulatory/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Adenocarcinoma/blood , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Angiogenesis Inhibitors/administration & dosage , Bevacizumab/administration & dosage , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/blood , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , Follow-Up Studies , Humans , Lymphocyte Count , Male , Middle Aged , Progression-Free Survival , Prospective Studies , Proto-Oncogene Proteins p21(ras)/analysis , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...