Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Physiol Rep ; 4(12)2016 Jun.
Article in English | MEDLINE | ID: mdl-27356569

ABSTRACT

Development of a disease-modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well-characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the origin and severity of kidney cyst formation. Pkd1 deletion on postnatal day 1 or 2 results in cysts arising from both the cortical and medullary regions, whereas deletion on postnatal days 3-8 results in primarily medullary cyst formation. Altering the extent of Pkd1 deletion by modulating the tamoxifen dose produces dose-dependent changes in the severity, but not origin, of cystogenesis. Limited Pkd1 deletion produces progressive kidney cystogenesis, accompanied by interstitial fibrosis and loss of kidney function. Cyst growth occurs in two phases: an early, rapid growth phase, followed by a later, slow growth period. Analysis of biochemical pathway changes in cystic kidneys reveals dysregulation of the cell cycle, increased proliferation and apoptosis, activation of Mek-Erk, Akt-mTOR, and Wnt-ß-catenin signaling pathways, and altered glycosphingolipid metabolism that resemble the biochemical changes occurring in human ADPKD kidneys. These pathways are normally active in neonatal mouse kidneys until repressed around 3 weeks of age; however, they remain active following Pkd1 deletion. Together, this work describes the key parameters to accurately model the pathological and biochemical changes associated with ADPKD in a conditional mouse model.


Subject(s)
Gene Deletion , Polycystic Kidney Diseases/genetics , TRPP Cation Channels/metabolism , Animals , Disease Models, Animal , Fibrosis , Kidney/metabolism , Kidney/pathology , MAP Kinase Signaling System , Mice , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/pathology , TRPP Cation Channels/genetics , Wnt Signaling Pathway
2.
Hum Mol Genet ; 21(15): 3397-407, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22563011

ABSTRACT

Genetic forms of polycystic kidney diseases (PKDs), including nephronophthisis, are characterized by formation of fluid-filled cysts in the kidneys and progression to end-stage renal disease. No therapies are currently available to treat cystic diseases, making it imperative to dissect molecular mechanisms in search of therapeutic targets. Accumulating evidence suggests a pathogenic role for glucosylceramide (GlcCer) in multiple forms of PKD. It is not known, however, whether other structural glycosphingolipids (GSLs) or bioactive signaling sphingolipids (SLs) modulate cystogenesis. Therefore, we set out to address the role of a specific GSL (ganglioside GM3) and signaling SL (sphingosine-1-phosphate, S1P) in PKD progression, using the jck mouse model of nephronopthisis. To define the role of GM3 accumulation in cystogenesis, we crossed jck mice with mice carrying a targeted mutation in the GM3 synthase (St3gal5) gene. GM3-deficient jck mice displayed milder PKD, revealing a pivotal role for ganglioside GM3. Mechanistic changes in regulation of the cell-cycle machinery and Akt-mTOR signaling were consistent with reduced cystogenesis. Dramatic overexpression of sphingosine kinase 1 (Sphk1) mRNA in jck kidneys suggested a pathogenic role for S1P. Surprisingly, genetic loss of Sphk1 exacerbated cystogenesis and was associated with increased levels of GlcCer and GM3. On the other hand, increasing S1P accumulation through pharmacologic inhibition of S1P lyase had no effect on the progression of cystogenesis or kidney GSL levels. Together, these data suggest that genes involved in the SL metabolism may be modifiers of cystogenesis, and suggest GM3 synthase as a new anti-cystic therapeutic target.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/genetics , Polycystic Kidney Diseases/genetics , Sialyltransferases/genetics , Animals , Disease Models, Animal , Glucosylceramides/metabolism , Glycosphingolipids/metabolism , Mice , Oncogene Protein v-akt/genetics , Oncogene Protein v-akt/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Polycystic Kidney Diseases/enzymology , Sialyltransferases/metabolism , Sphingosine/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Nat Med ; 16(7): 788-92, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20562878

ABSTRACT

Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase-mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.


Subject(s)
Dioxanes/pharmacology , Glucosylceramides/biosynthesis , Polycystic Kidney Diseases/metabolism , Pyrrolidines/pharmacology , Animals , Cell Cycle , Disease Models, Animal , G(M3) Ganglioside/metabolism , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/metabolism , Humans , Mice , Mice, Knockout , Polycystic Kidney Diseases/drug therapy , Rats
4.
Article in English | MEDLINE | ID: mdl-12450525

ABSTRACT

Singly- and dually-labeled synthetic oligonucleotides were purified by ion-pair reversed-phase high-performance liquid chromatography using a 50x4.6-mm column packed with porous, 2.5 micrometer C(18) sorbent. We studied the mechanism of dye-labeled oligonucleotide retention in order to improve the quality of purification. By-products of oligonucleotide synthesis were characterized by liquid chromatography with mass spectrometry detection (LC-MS). We purified oligonucleotides labeled with 6-carboxyfluorescein (6FAM), hexachlorofluorescein (HEX), tetrachlorofluorescein (TET), carboxytetramethylrhodamine (TAMRA) and indodicarboxycyanine (Cy3) dyes, as well as dually-labeled TaqMan probes. Purification of a 0.1-micromole oligonucleotide synthesis in a single injection was demonstrated.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fluorescent Dyes/chemistry , Oligonucleotides/isolation & purification , Base Sequence , DNA Primers , Ions , Mass Spectrometry , Oligonucleotides/chemistry
5.
Oligonucleotides ; 13(4): 229-43, 2003.
Article in English | MEDLINE | ID: mdl-15000838

ABSTRACT

A method for the analysis and characterization of therapeutic and diagnostic oligonucleotides has been developed using a combination of liquid chromatography and mass spectrometry (LC-MS). The optimized ion-pairing buffers permit a highly efficient separation of native and chemically modified antisense oligonucleotides (AS-ODNs) from their metabolites or failure synthetic products. The mobile phases were MS compatible, allowing for direct and sensitive analysis of components eluting from the column. The method was applied for the quantitation and characterization of AS-ODNs, including phosphorothioates and 2'-O-methyl-modified phosphorothioates. Tandem LC-MS analysis confirmed the identity of the oligonucleotide metabolites, failure products, the presence of protection groups not removed after synthesis, and the extent of depurination or phosphorothioate backbone oxidation.


Subject(s)
Oligodeoxyribonucleotides, Antisense/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods
6.
J Chromatogr A ; 958(1-2): 167-82, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-12134814

ABSTRACT

An ion-pair reversed-phase HPLC method was evaluated for the separation of synthetic oligonucleotides. Mass transfer in the stationary phase was found to be a major factor contributing to peak broadening on porous C18 stationary phases. A small sorbent particle size (2.5 microm), elevated temperature and a relatively slow flow-rate were utilized to enhance mass transfer. A short 50 mm column allows for an efficient separation up to 30mer oligonucleotides. The separation strategy consists of a shallow linear gradient of organic modifier, optimal initial gradient strength, and the use of an ion-pairing buffer. The triethylammonium acetate ion-pairing mobile phases have been traditionally used for oligonucleotide separations with good result. However, the oligonucleotide retention is affected by its nucleotide composition. We developed a mathematical model for the prediction of oligonucleotide retention from sequence and length. We used the model successfully to select the optimal initial gradient strength for fast HPLC purification of synthetic oligonucleotides. We also utilized ion-pairing mobile phases comprised of triethylamine (TEA) buffered by hexafluoroisopropanol (HFIP). The TEA-HFIP aqueous buffers are useful for a highly efficient and less sequence-dependent separation of heterooligonucleotides.


Subject(s)
Chromatography, High Pressure Liquid/methods , Oligonucleotides/analysis , Base Sequence , DNA Primers , Electrophoresis, Capillary , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...