Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067592

ABSTRACT

Selective oxidative C-O coupling of hydrazones with diacetyliminoxyl is demonstrated, in which diacetyliminoxyl plays a dual role. It is an oxidant (hydrogen atom acceptor) and an O-partner for the oxidative coupling. The reaction is completed within 15-30 min at room temperature, is compatible with a broad scope of hydrazones, provides high yields in most cases, and requires no additives, which makes it robust and practical. The proposed reaction leads to the novel structural family of azo compounds, azo oxime ethers, which were discovered to be highly potent fungicides against a broad spectrum of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, Sclerotinia sclerotiorum).


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Hydrazones/pharmacology , Hydrazones/chemistry , Ethers/pharmacology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Structure-Activity Relationship
2.
Org Biomol Chem ; 21(38): 7758-7766, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37698014

ABSTRACT

The intermolecular oxime radical addition to CC bonds was observed and studied for the first time. The diacetyliminoxyl radical was proposed as a model radical reagent for the study of oxime radical reactivity towards unsaturated substrates, which is important in the light of the active development of synthetic applications of oxime radicals. In the present work it was found that the diacetyliminoxyl radical reacts with vinylarenes and conjugated dienes to give radical addition products, whereas unconjugated alkenes can undergo radical addition or allylic hydrogen substitution by diacetyliminoxyl depending on the substrate structure. Remarkably, substituted alkenes give high yields of C-O coupling products despite the significant steric hindrance, whereas unsubstituted alkenes give lower yields of the C-O coupling products. The observed atypical C-O coupling yield dependence on the alkene structure was explained by the discovered ability of the diacetyliminoxyl radical to attack alkenes with the formation of a C-N bond instead of a C-O bond giving side products. This side process is not expected for sterically hindered alkenes due to lower steric availability of the N-atom in diacetyliminoxyl than that of the O-atom.

3.
Inorg Chem ; 62(28): 10965-10972, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37399244

ABSTRACT

In the present work, the study of the unusual interaction between copper hexafluoroacetylacetonate and the diacetyliminoxyl radical resulted in two discoveries from different fields: the determination of the oxime radical spatial structure and the introduction of an oxime radical into the field of molecular magnetic material design. Oxime radicals are key plausible intermediates in the processes of oxidative CH-functionalization and in the synthesis of functionalized isoxazolines from oximes. Due to the lack of X-ray diffraction data for oxime radicals, the knowledge about their structure is based mainly on indirect approaches, spectroscopic methods (electron paramagnetic resonance and IR), and quantum chemical calculations. The structure of the oxime radical was determined for the first time by stabilizing the diacetyliminoxyl radical in the form of its complex with copper (II) hexafluoroacetylacetonate (Cu(hfac)2), followed by single-crystal X-ray diffraction analysis. Although oxime radicals are known to undergo oxidative coupling with acetylacetonate ligands in transition-metal complexes, a complex is formed with intact hfac ligands. X-ray diffraction studies have shown that the oxime radical is coordinated with copper ions through the oxygen atoms of the carbonyl groups without the direct involvement of the C═N-O• radical moiety. The structure of the coordinated diacetyliminoxyl is in good agreement with the density functional theory (DFT) prediction for free diacetyliminoxyl due to the very weak interaction of the radical molecule with copper ions. Remarkably, both weak ferromagnetic and antiferromagnetic interactions between Cu (II) and oxime radicals have been revealed by modeling the temperature dependence of magnetic susceptibility and confirmed by DFT calculations, rendering diacetyliminoxyl a promising building block for the design of molecular magnets.

4.
J Agric Food Chem ; 70(15): 4572-4581, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35380816

ABSTRACT

The development of new types of fungicides for agriculture and medicine is highly desirable due to the uprising fungal resistance against commonly used compounds. Herein, 4-substituted-4-nitropyrazolin-5-ones (nitropyrazolones) were proposed as highly active fungicides of the novel structural type. The first scalable and practical method for the nitropyrazolone synthesis was proposed, which is atom-efficient, is applicable for the multigram scale synthesis, and allows for production of a wide variety of nitropyrazolones with high yields and purity. The synthesized compounds demonstrated high fungicidal activity against the broad spectrum of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, and Sclerotinia sclerotiorum). Their mycelium growth inhibiting activity was comparable or superior to that of kresoxim-methyl. In vitro activity against Staphyloccocus aureus, Candida albicans, and Aspergillus niger revealed that nitropyrazolones are promising candidates against human pathogens. The key factors for the manifestation of high fungicidal activity were established to be an aromatic substituent on the N1 atom and small substituents, such as methyl, at the C3 and C4 positions of the pyrazolone ring.


Subject(s)
Fungicides, Industrial , Antifungal Agents/pharmacology , Crop Protection , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Humans , Structure-Activity Relationship
5.
Org Biomol Chem ; 19(35): 7581-7586, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34524335

ABSTRACT

As a rule, reactive free radicals used in organic synthesis are too labile to be isolated, whereas persistent radicals are inert and find limited synthetic application. In the present study, the unusually stable diacetyliminoxyl radical was presented as a "golden mean" between transient and stable unreactive radicals. It was successfully employed as a reagent for oxidative C-O coupling with ß-dicarbonyl compounds. Using this model radical the catalytic activity of acids, bases and transition metal ions in free-radical coupling was revealed.

6.
Beilstein J Org Chem ; 16: 1234-1276, 2020.
Article in English | MEDLINE | ID: mdl-32550935

ABSTRACT

N-Oxyl radicals (compounds with an N-O• fragment) represent one of the richest families of stable and persistent organic radicals with applications ranging from catalysis of selective oxidation processes and mechanistic studies to production of polymers, energy storage, magnetic materials design and spectroscopic studies of biological objects. Compared to other N-oxyl radicals, oxime radicals (or iminoxyl radicals) have been underestimated for a long time as useful intermediates for organic synthesis, despite the fact that their precursors, oximes, are extremely widespread and easily available organic compounds. Furthermore, oxime radicals are structurally exceptional. In these radicals, the N-O• fragment is connected to an organic moiety by a double bond, whereas all other classes of N-oxyl radicals contain an R2N-O• fragment with two single C-N bonds. Although oxime radicals have been known since 1964, their broad synthetic potential was not recognized until the last decade, when numerous selective reactions of oxidative cyclization, functionalization, and coupling mediated by iminoxyl radicals were discovered. This review is focused on the synthetic methods based on iminoxyl radicals developed in the last ten years and also contains some selected data on previous works regarding generation, structure, stability, and spectral properties of these N-oxyl radicals. The reactions of oxime radicals are classified into intermolecular (oxidation by oxime radicals, oxidative C-O coupling) and intramolecular. The majority of works are devoted to intramolecular reactions of oxime radicals. These reactions are classified into cyclizations involving C-H bond cleavage and cyclizations involving a double C=C bond cleavage.

7.
J Org Chem ; 85(4): 1935-1947, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31886660

ABSTRACT

Cross-dehydrogenative C-O coupling of N-hydroxyimides with ketones, esters, and carboxylic acids was achieved employing the di-tert-butyl peroxide as a source of free radicals and a dehydrogenating agent. The proposed method is experimentally simple and demonstrates the outstanding efficiency for the challenging CH substrates, such as unactivated esters and carboxylic acids. It was shown that N-hydroxyphthalimide drastically affects the oxidative properties of t-BuOOt-Bu by intercepting the t-BuO• radicals with the formation of phthalimide-N-oxyl radicals, a species responsible for both hydrogen atom abstraction from the CH reagent and the selective formation of the C-O coupling product by selective radical cross-recombination. The practical applicability of the developed method was exemplified by the single-stage synthesis of commercial reagent (known as Baran aminating reagent precursor) from isobutyric acid and N-hydroxysuccinimide, whereas in the standard synthetic approach, four stages are necessary.

8.
Chemistry ; 25(23): 5922-5933, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30834586

ABSTRACT

4-Nitropyrazolin-5-ones have been synthesized by the nitration of pyrazolin-5-ones at room temperature by employing the Fe(NO3 )3 /NaNO2 system. The method demonstrated selectivity towards the 4-position of pyrazolin-5-ones even in the presence of NPh and allyl substituents, which are sensitive to nitration. It was shown that other systems containing FeIII and nitrites, namely Fe(NO3 )3 /tBuONO, Fe(ClO4 )3 /NaNO2 , and Fe(ClO4 )3 /tBuONO, were also effective. Presumably, FeIII oxidizes the nitrite (NaNO2 or tBuONO) to form the NO2 free radical, which serves as the nitrating agent for pyrazolin-5-ones. The synthesized 4-nitropyrazolin-5-ones were discovered to be a new class of fungicides. Their in vitro activities against phytopathogenic fungi were found comparable or even superior to those of commercial fungicides (fluconazole, clotrimazole, triadimefon, and kresoxim-methyl). These results represent a promising starting point for the development of a new type of plant protection agents that can be easily synthesized from widely available reagents.

SELECTION OF CITATIONS
SEARCH DETAIL
...