Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 33(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37844292

ABSTRACT

Networks with different levels of interactions, including multilayer and multiplex networks, can display a rich diversity of dynamical behaviors and can be used to model and study a wide range of systems. Despite numerous efforts to investigate these networks, obtaining mathematical descriptions for the dynamics of multilayer and multiplex systems is still an open problem. Here, we combine ideas and concepts from linear algebra and graph theory with nonlinear dynamics to offer a novel approach to study multiplex networks of Kuramoto oscillators. Our approach allows us to study the dynamics of a large, multiplex network by decomposing it into two smaller systems: one representing the connection scheme within layers (intra-layer), and the other representing the connections between layers (inter-layer). Particularly, we use this approach to compose solutions for multiplex networks of Kuramoto oscillators. These solutions are given by a combination of solutions for the smaller systems given by the intra- and inter-layer systems, and in addition, our approach allows us to study the linear stability of these solutions.

2.
Nat Commun ; 14(1): 3409, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296131

ABSTRACT

Recent analyses have found waves of neural activity traveling across entire visual cortical areas in awake animals. These traveling waves modulate the excitability of local networks and perceptual sensitivity. The general computational role of these spatiotemporal patterns in the visual system, however, remains unclear. Here, we hypothesize that traveling waves endow the visual system with the capacity to predict complex and naturalistic inputs. We present a network model whose connections can be rapidly and efficiently trained to predict individual natural movies. After training, a few input frames from a movie trigger complex wave patterns that drive accurate predictions many frames into the future solely from the network's connections. When the recurrent connections that drive waves are randomly shuffled, both traveling waves and the ability to predict are eliminated. These results suggest traveling waves may play an essential computational role in the visual system by embedding continuous spatiotemporal structures over spatial maps.


Subject(s)
Visual Cortex , Wakefulness , Animals , Visual Cortex/physiology
3.
Chaos ; 32(3): 031104, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35364855

ABSTRACT

One of the simplest mathematical models in the study of nonlinear systems is the Kuramoto model, which describes synchronization in systems from swarms of insects to superconductors. We have recently found a connection between the original, real-valued nonlinear Kuramoto model and a corresponding complex-valued system that permits describing the system in terms of a linear operator and iterative update rule. We now use this description to investigate three major synchronization phenomena in Kuramoto networks (phase synchronization, chimera states, and traveling waves), not only in terms of steady state solutions but also in terms of transient dynamics and individual simulations. These results provide new mathematical insight into how sophisticated behaviors arise from connection patterns in nonlinear networked systems.


Subject(s)
Chimera , Nonlinear Dynamics , Models, Theoretical
4.
Entropy (Basel) ; 23(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34441165

ABSTRACT

Time series analysis comprises a wide repertoire of methods for extracting information from data sets. Despite great advances in time series analysis, identifying and quantifying the strength of nonlinear temporal correlations remain a challenge. We have recently proposed a new method based on training a machine learning algorithm to predict the temporal correlation parameter, α, of flicker noise (FN) time series. The algorithm is trained using as input features the probabilities of ordinal patterns computed from FN time series, xαFN(t), generated with different values of α. Then, the ordinal probabilities computed from the time series of interest, x(t), are used as input features to the trained algorithm and that returns a value, αe, that contains meaningful information about the temporal correlations present in x(t). We have also shown that the difference, Ω, of the permutation entropy (PE) of the time series of interest, x(t), and the PE of a FN time series generated with α=αe, xαeFN(t), allows the identification of the underlying determinism in x(t). Here, we apply our methodology to different datasets and analyze how αe and Ω correlate with well-known quantifiers of chaos and complexity. We also discuss the limitations for identifying determinism in highly chaotic time series and in periodic time series contaminated by noise. The open source algorithm is available on Github.

SELECTION OF CITATIONS
SEARCH DETAIL
...