Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 113(5): 1401-1414, 2024 May.
Article in English | MEDLINE | ID: mdl-38220088

ABSTRACT

Silicone oil is a commonly used lubricant in pre-filled syringes (PFSs) and can migrate over time into solution in the form of silicone oil particles (SiOPs). The presence of these SiOPs can result in elevated subvisible particle counts in PFS drug products compared to other drug presentations such as vials or cartridges. Their presence in products presents analytical challenges as they complicate quantitation and characterization of other types of subvisible particles in solution. Previous studies have suggested that they can potentially act as adjuvant resulting in potential safety risks for patients. In this paper we present several analytical case studies describing the impact of the presence of SiOPs in biotherapeutics on the analysis of the drug as well as clinical case studies examining the effect of SiOPs on patient safety. The analytical case studies demonstrate that orthogonal techniques, especially flow imaging, can help differentiate SiOPs from other types of particulate matter. The clinical case studies showed no difference in the observed patient safety profile across multiple drugs, patient populations, and routes of administration, indicating that the presence of SiOPs does not impact patient safety.


Subject(s)
Biological Products , Silicone Oils , Humans , Silicone Oils/analysis , Particle Size , Pharmaceutical Preparations , Particulate Matter , Syringes
2.
J Pharm Sci ; 112(12): 2965-2980, 2023 12.
Article in English | MEDLINE | ID: mdl-37741455

ABSTRACT

Antibody-drug conjugates unite the specificity and long circulation time of an antibody with the toxicity of a chemical cytostatic or otherwise active drug using appropriate chemical linkers to reduce systemic toxicity and increase therapeutic index. This combination of a large biological molecule and a small molecule creates an increase in complexity. Multiple production processes are required to produce the native antibody, the drug and the linker, followed by conjugation of afore mentioned entities to form the final antibody-drug conjugate. The connected processes further increase the number of points of control, resulting in necessity of additional specifications and intensified analytical characterization. By combining scientific understanding of the production processes with risk-based approaches, quality can be demonstrated at those points where control is required and redundant comparability studies, specifications or product characterization are avoided. Over the product development lifecycle, this will allow process qualification to focus on those areas critical to quality and prevent redundant studies. The structure of the module 3 common technical document for an ADC needs to reflect each of the production processes and the combined overall approach to quality. Historically, regulatory authorities have provided varied expectations on its structure. This paper provides an overview of essential information to be included and shows that multiple approaches work as long as adequate cross-referencing is included.


Subject(s)
Immunoconjugates , Immunoconjugates/chemistry , Antibodies, Monoclonal/chemistry
3.
ACS Appl Mater Interfaces ; 15(29): 34540-34553, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37450418

ABSTRACT

Therapeutically relevant proteins naturally adsorb to interfaces, causing aggregation which in turn potentially leads to numerous adverse consequences such as loss of activity or unwanted immunogenic reactions. Surfactants are ubiquitously used in biotherapeutics drug development to oppose interfacial stress, yet, the choice of the surfactant is extremely limited: to date, only polysorbates (PS20/80) and poloxamer 188 are used in commercial products. However, both surfactant families suffer from severe degradation and impurities of the raw material, which frequently increases the risk of particle generation, chemical protein degradation, and potential adverse immune reactions. Herein, we assessed a total of 40 suitable alternative surfactant candidates and subsequently performed a selection through a three-gate screening process employing four protein modalities encompassing six different formulations. The screening is based on short-term agitation-induced aggregation studies coupled to particle analysis and surface tension characterization, followed by long-term quiescence stability studies connected to protein purity measurements and particle analysis. The study concludes by assessing the surfactant's chemical and enzymatic degradation propensity. The candidates emerging from the screening are de novo α-tocopherol-derivatives named VEDG-2.2 and VEDS, produced ad hoc for this study. They display protein stabilization potential comparable or better than polysorbates together with an increased resistance to chemical and enzymatic degradation, thus representing valuable alternative surfactants for biotherapeutics.


Subject(s)
Biological Products , Pulmonary Surfactants , Humans , Surface-Active Agents/chemistry , Polysorbates/chemistry , Poloxamer/chemistry , Proteins/chemistry
5.
AAPS J ; 25(1): 6, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471030

ABSTRACT

A survey performed by the AAPS Drug Product Handling community revealed a general, mostly consensus, approach to the strategy for the selection of surfactant type and level for biopharmaceutical products. Discussing and building on the survey results, this article describes the common approach for surfactant selection and control strategy for protein-based therapeutics and focuses on key studies, common issues, mitigations, and rationale. Where relevant, each section is prefaced by survey responses from the 22 anonymized respondents. The article format consists of an overview of surfactant stabilization, followed by a strategy for the selection of surfactant level, and then discussions regarding risk identification, mitigation, and control strategy. Since surfactants that are commonly used in biologic formulations are known to undergo various forms of degradation, an effective control strategy for the chosen surfactant focuses on understanding and controlling the design space of the surfactant material attributes to ensure that the desired material quality is used consistently in DS/DP manufacturing. The material attributes of a surfactant added in the final DP formulation can influence DP performance (e.g., protein stability). Mitigation strategies are described that encompass risks from host cell proteins (HCP), DS/DP manufacturing processes, long-term storage, as well as during in-use conditions.


Subject(s)
Excipients , Surface-Active Agents , Protein Stability , Lipoproteins
6.
Int J Pharm X ; 4: 100108, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35024603

ABSTRACT

Cryoconcentration upon large-scale freezing of monoclonal antibody (mAb) solutions leads to regions of different ratios of low molecular weight excipients, like buffer species or sugars, to protein. This study focused on the impact of the buffer species to mAb ratio on aggregate formation after frozen storage at -80 °C, -20 °C, and - 10 °C after 6 weeks, 6 months, and 12 months. An optimised sample preparation was established to measure Tg' of samples with different mAb to histidine ratios via differential scanning calorimetry (DSC). After storage higher molecular weight species (HMWS) and subvisible particles (SVPs) were detected using size-exclusion chromatography (SEC) and FlowCam, respectively. For all samples, sigmoidal curves in DSC thermograms allowed to precisely determine Tg' in formulations without glass forming sugars. Storage below Tg' did not lead to mAb aggregation. Above Tg', at -20 °C and - 10 °C, small changes in mAb and buffer concentration markedly impacted stability. Samples with lower mAb concentration showed increased formation of HMWS. In contrast, higher concentrated samples led to more SVPs. A shift in the mAb to histidine ratio towards mAb significantly increased overall stability. Cryoconcentration upon large-scale freezing affects mAb stability, although relative changes compared to the initial concentration are small. Storage below Tg' completely prevents mAb aggregation and particle formation.

7.
Int J Pharm X ; 4: 100109, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35024604

ABSTRACT

We examined the impact of monoclonal antibody (mAb) and buffer concentration, mimicking the cryoconcentration found upon freezing in a 2 L bottle, on mAb stability during frozen storage. Upon cryoconcentration, larger protein molecules and small excipient molecules freeze-concentrate differently, resulting in different protein to stabiliser ratios within a container. Understanding the impact of these shifted ratios on protein stability is essential. For two mAbs a set of samples with constant mAb (5 mg/mL) or buffer concentration (medium histidine/adipic acid) was prepared and stored for 6 months at -10 °C. Stability was evaluated via size-exclusion chromatography, flow imaging microscopy, UV/Vis spectroscopy at 350 nm, and protein A chromatography. Dynamic light scattering was used to determine kD values. Soluble aggregate levels were unaffected by mAb concentration, but increased with histidine concentration. No trend in optical density could be identified. In contrast, increasing mAb or buffer concentration facilitated the formation of subvisible particles. A trend towards attractive protein-protein interactions was seen with higher ionic strength. MAb oxidation levels were negatively affected by increasing histidine concentration, but became less with higher mAb concentration. Small changes in mAb and buffer composition had a significant impact on stability during six-month frozen storage. Thus, preventing cryoconcentration effects in larger freezing containers may improve long-term stability.

8.
J Pharm Sci ; 111(7): 1973-1983, 2022 07.
Article in English | MEDLINE | ID: mdl-35007568

ABSTRACT

There is a need for representative small volume devices that reflect monoclonal antibody (mAb) aggregation during freezing and thawing (FT) in large containers. We characterised two novel devices that aim to mimic the stress in rectangular 2 L bottles. The first scale-down device (SDD) consists of a 125 mL bottle surrounded by a 3D printed cover that manipulates heat exchange. The second device, a micro scale-down device (mSDD), adapts cooling and heating of 10 mL vials to extend stress time. MAb aggregation upon repeated FT was evaluated considering formation of higher molecular weight species, subvisible particles, and the increase in hydrodynamic radius, polydispersity index, and optical density at 350 nm. Three different mAb solutions were processed. Both an unshielded 125 mL bottle and the SDD can be used to predict aggregation during FT in 2 L bottles. In specific cases the unshielded 125 mL bottle underestimates whereas the SDD slightly overestimates soluble aggregate formation. The mSDD increases aggregation compared to 10 mL vials but is less representative than the SDD. Ultimately, both SDDs enable characterisation of protein sensitivity to large-scale FT with two orders of magnitude less volume and are superior to simply using smaller bottles.


Subject(s)
Antibodies, Monoclonal , Freezing
9.
Pharm Res ; 38(11): 1977-1989, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34729702

ABSTRACT

PURPOSE: Scale-down devices (SDD) are designed to simulate large-scale thawing of protein drug substance, but require only a fraction of the material. To evaluate the performance of a new SDD that aims to predict thawing in large-scale 2 L bottles, we characterised 3D temperature profiles and changes in concentration and density in comparison to 125 mL and 2 L bottles. Differences in diffusion between a monoclonal antibody (mAb) and histidine buffer after thawing were examined. METHODS: Temperature profiles at six distinct positions were recorded with type T thermocouples. Size-exclusion chromatography allowed quantification of mAb and histidine. Polysorbate 80 was quantified using a fluorescent dye assay. In addition, the solution's density at different locations in bottles and the SDD was identified. RESULTS: The temperature profiles in the SDD and the large-scale 2 L bottle during thawing were similar. Significant concentration gradients were detected in the 2 L bottle leading to marked density gradients. The SDD slightly overestimated the dilution in the top region and the maximum concentrations at the bottom. Fast diffusion resulted in rapid equilibration of histidine. CONCLUSION: The innovative SDD allows a realistic characterisation and helps to understand thawing processes of mAb solutions in large-scale 2 L bottles. Only a fraction of material is needed to gain insights into the thawing behaviour that is associated with several possible detrimental limitations.


Subject(s)
Antibodies, Monoclonal/chemistry , Excipients/chemistry , Buffers , Chemistry, Pharmaceutical , Drug Storage , Excipients/analysis , Freezing , Polysorbates/analysis , Polysorbates/chemistry
10.
Pharm Res ; 37(9): 179, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32864719

ABSTRACT

PURPOSE: Small-scale models that simulate large-scale freezing of bulk drug substance of biopharmaceuticals are highly needed to define freezing and formulation parameters based on process understanding. We evaluated a novel scale-down device (SDD), which is based on a specially designed insulation cover, with respect to changes in concentration after freezing, referred to as cryoconcentration, and 3D temperature profiles. Furthermore, the effect of the initial monoclonal antibody (mAb) concentration on cryoconcentration was addressed. METHODS: 2 L and 125 mL bottles were utilized. Temperatures were mapped using type T thermocouples. Frozen blocks were cut and mAb and histidine concentrations were analysed by HPLC. In addition, concentration- and temperature-dependent viscosities were measured. RESULTS: 3D freezing profiles in the SDD were comparable to large-scale bottles. The SDD accurately predicted cryoconcentration of both mAb and histidine of large-scale freezing. Concentric changes in concentration were evident as well as an unforeseen diluted core at the last point to freeze. At low initial mAb concentration cryoconcentration was substantial, while high initial mAb concentration suppressed cryoconcentration almost completely. CONCLUSION: The novel SDD gives detailed insights into large-scale freezing of mAb solutions using only a fraction of the simulated volume. It is a promising material- and cost-saving tool to understand large-scale freezing processes.


Subject(s)
Antibodies, Monoclonal/chemistry , Equipment Design/instrumentation , Proteins/chemistry , Thermography/instrumentation , Antibodies, Monoclonal/analysis , Freezing , Histidine/analysis , Histidine/chemistry , Kinetics , Proteins/analysis , Solutions , Temperature
11.
J Pharm Sci ; 109(1): 161-168, 2020 01.
Article in English | MEDLINE | ID: mdl-31408634

ABSTRACT

Antibody conjugates, in particular antibody-drug conjugates (ADCs), are a fast-growing area in research and in the pharmaceutical industry. The covalent attachment of an antibody to a chemical moiety can be an effective measure for drug targeting or can also positively impact pharmacokinetics of small molecular compounds by serum half-life extension. Stability, physicochemical properties, and degradation pathways of biotherapeutics or small molecule therapeutics are often not totally known and understood. However, ADCs represent a hybrid of small molecular and macromolecular components, and their properties are still not fully understood and described. This review discusses the alteration of the physicochemical properties of antibodies upon conjugation of chemical moieties to its surface and the resulting impact on ADC stability.


Subject(s)
Antibodies, Monoclonal/chemistry , Chemical Phenomena , Colloids/chemistry , Immunoconjugates/chemistry , Protein Aggregates/physiology , Animals , Antibodies, Monoclonal/metabolism , Colloids/metabolism , Drug Stability , Humans , Hydrophobic and Hydrophilic Interactions , Immunoconjugates/metabolism , Protein Binding/physiology
12.
PDA J Pharm Sci Technol ; 73(2): 111-120, 2019.
Article in English | MEDLINE | ID: mdl-30361287

ABSTRACT

Vial capping plays a critical role in the drug product manufacturing process owing to the complex interplay of several adjustable process steps. Seal quality and integrity and containment assurance are essential for parenteral pharmaceuticals, as the vial's content may be contaminated or, in the case of highly potent drugs (e.g., antibody drug conjugates), may bear a risk of contamination. The residual seal force (RSF) method can enable further insight in capping equipment settings independently of the container closure system (CCS) and their resulting seal quality.The present study investigates the accuracy of the RSF method focusing on different force settings, RSF development over time, distance between capping plates and vial neck (roller-axis), time point of flip-off button removal, and internal and external vial pressure differences (flight simulation and vials closed under vacuum).Results show that the forces used on an RSF tester should be kept low to minimize CCS deformation, and a period of stable RSF values after the initial decrease should be implemented between capping and RSF measurement to increase accuracy. Variations in the distance between the capping plates and vial neck (roller-axis) can result in incomplete crimps or visual defects of the seals. In addition, the time point of flip-off button removal as part of the sample preparation had no significant impact on RSF measurements. Finally, pressure differences between the vial interior and exterior had no significant impact on the RSF data.LAY ABSTRACT: Vial capping plays a critical role in the drug product manufacturing process due to the complex interplay of several adjustable process steps. Seal quality, integrity, and containment are essential for parenteral pharmaceuticals, as the vial's content varies and may be contaminated, sensitive to stress, and/or highly potent (eg, antibody drug conjugates). The residual seal force (RSF) method can enable further insight in capping equipment settings independently of the container closure system and their resulting seal quality.In this study, we determined RSF values by applying different force settings of the RSF tester and investigated the influence of sample preparation on the determination of RSF. Furthermore, the capping process parameter roller-axis was evaluated by RSF and visual inspection. In addition, we investigated the influence of pressure differences of vials on the RSF as they occurred during air transport and products closed under vacuum.


Subject(s)
Drug Contamination/prevention & control , Drug Packaging/standards , Injections/standards , Technology, Pharmaceutical/methods , Immunoconjugates/administration & dosage , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/standards , Time Factors
13.
J Pharm Sci ; 108(3): 1236-1245, 2019 03.
Article in English | MEDLINE | ID: mdl-30389566

ABSTRACT

Oxidation of biopharmaceutics represents a major degradation pathway, which may impact bioactivity, serum half-life, and colloidal stability. This study focused on the quantification of oxidation and its effects on structure and colloidal stability for a model antibody and its lysine (ADC-L) and cysteine (ADC-C) conjugates. The effects of oxidation were evaluated by a forced degradation study using H2O2 and a shelf-life simulation, which used degrading polysorbate 80 as source for reactive oxygen species. Differential scanning fluorimetry revealed decreasing transition temperatures of the CH2 domain with rising oxidation, resulting in a loss of colloidal stability as assessed by size-exclusion high pressure liquid chromatography. The conjugation technique influences structural changes of the monoclonal antibody (mAb) and subsequently alters the impact of oxidation. ADC-C was most effected by oxidation as the CH2 domain showed the biggest destabilization on conjugation compared to the mAb and ADC-L. Quantification of Fc methionine oxidation by analytical protein A chromatography revealed 4-fold higher oxidation after 8 weeks for the ADC-C compared to the mAb. Payload degradation was observed independently of the conjugation technique used or if free in solution by ultraviolet-visible. In addition, adding antioxidants can be a suitable approach to prevent oxidation and achieve baseline stabilization of the proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , Drug Stability , Immunoconjugates/chemistry , Oxidation-Reduction , Protein Stability , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Drug Compounding/methods , Drug Storage , Excipients/chemistry , Hydrogen Peroxide/chemistry , Time Factors
14.
Mol Pharm ; 15(7): 2656-2664, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29809017

ABSTRACT

In silico screening of toxin payloads typically employed in ADCs revealed a wide range of hydrophobicities and sizes as measured by log P and topological polar surface area (tPSA) values. These descriptors were used to identify three nontoxic surrogate payloads that encompass the range of hydrophobicity defined by the ADC toxin training set. The uniform drug to antibody ratio (DAR) ADCs were prepared for each surrogate payload by conjugation to the interchain cysteine residues of a model IgG1 subtype mAb. Linkage of these surrogate payloads to a common mAb with a matched DAR value allowed for preliminary analytical interrogation of the influence of payload hydrophobicity on global structure, self-association, and aggregation properties. The results of differential scanning fluorimetry and dynamic light scattering experiments clearly revealed a direct correlation between the destabilization of the native mAb structure and the increasing payload hydrophobicity. Also, self-association/aggregation propensity examined by self-interaction biolayer interferometry or size exclusion HPLC was consistent with increased conversion of the monomeric mAb to higher order aggregated species, with the degree of conversion directly proportional to the payload hydrophobicity. In summary, these findings prove that the payload-dependent structure destabilization and enhanced propensity to self-associate/aggregate driven by the increasing payload hydrophobicity contribute to reduced ADC stability and more complex behavior when assessing exposure and safety/efficacy relationships.


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Agents, Immunological/chemistry , Drug Stability , Immunoconjugates/chemistry , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Chemistry, Pharmaceutical , Computer Simulation , Cysteine/chemistry , Dynamic Light Scattering , Fluorometry , Hydrophobic and Hydrophilic Interactions , Immunoconjugates/therapeutic use , Immunoglobulin G/chemistry , Immunoglobulin G/therapeutic use , Neoplasms/drug therapy , Neoplasms/immunology
15.
J Pharm Pharmacol ; 70(5): 625-635, 2018 May.
Article in English | MEDLINE | ID: mdl-29380379

ABSTRACT

OBJECTIVES: Oxidation of protein therapeutics is a major chemical degradation pathway which may impact bioactivity, serum half-life and stability. Therefore, oxidation is a relevant parameter which has to be monitored throughout formulation development. Methods such as HIC, RPLC and LC/MS achieve a separation of oxidized and non-oxidized species by differences in hydrophobicity. Antibody-drug conjugates (ADC) although are highly more complex due to the heterogeneity in linker, drug, drug-to-antibody ratio (DAR) and conjugation site. The analytical protein A chromatography can provide a simple and fast alternative to these common methods. METHODS: A miniature analytical protein A chromatography method in combination with an IdeS digest was developed to analyse ADCs. The IdeS digest efficiency of an IgG1 was monitored using SEC-HPLC and non-reducing SDS-PAGE. An antibody-fluorescent dye conjugate was conjugated at different dye-to-antibody ratios as model construct to mimic an ADC. KEY FINDINGS: With IdeS, an almost complete digest of a model IgG1 can be achieved (digested protein amount >98%). This enables subsequent analytical protein A chromatography, which consequently eliminates any interference of payload with the stationary phase. CONCLUSION: A novel high-throughput method for an interchain cysteine-linked ADC oxidation screens during formulation development was developed.


Subject(s)
High-Throughput Screening Assays/methods , Immunoconjugates/analysis , Immunoglobulin G/chemistry , Staphylococcal Protein A/chemistry , Chromatography, High Pressure Liquid/methods , Cysteine/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Immunoconjugates/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...