Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Infect Dis ; 3(1): 5-17, 2017 01 13.
Article in English | MEDLINE | ID: mdl-27726334

ABSTRACT

VCC234718, a molecule with growth inhibitory activity against Mycobacterium tuberculosis (Mtb), was identified by phenotypic screening of a 15344-compound library. Sequencing of a VCC234718-resistant mutant identified a Y487C substitution in the inosine monophosphate dehydrogenase, GuaB2, which was subsequently validated to be the primary molecular target of VCC234718 in Mtb. VCC234718 inhibits Mtb GuaB2 with a Ki of 100 nM and is uncompetitive with respect to IMP and NAD+. This compound binds at the NAD+ site, after IMP has bound, and makes direct interactions with IMP; therefore, the inhibitor is by definition uncompetitive. VCC234718 forms strong pi interactions with the Y487 residue side chain from the adjacent protomer in the tetramer, explaining the resistance-conferring mutation. In addition to sensitizing Mtb to VCC234718, depletion of GuaB2 was bactericidal in Mtb in vitro and in macrophages. When supplied at a high concentration (≥125 µM), guanine alleviated the toxicity of VCC234718 treatment or GuaB2 depletion via purine salvage. However, transcriptional silencing of guaB2 prevented Mtb from establishing an infection in mice, confirming that Mtb has limited access to guanine in this animal model. Together, these data provide compelling validation of GuaB2 as a new tuberculosis drug target.


Subject(s)
Antitubercular Agents/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Mycobacterium/drug effects , Sulfones/pharmacology , Tuberculosis/drug therapy , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Discovery , Drug Resistance, Bacterial , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Genome, Bacterial , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Mice , Mice, Inbred C57BL , Mutation , Tuberculosis/microbiology
2.
Biosensors (Basel) ; 3(3): 297-311, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-25586260

ABSTRACT

Two label-free biosensor platforms, Resonance Waveguide Grating (RWG) and Surface Plasmon Resonance (SPR), were used to rank a large panel of anti-dengue virus NS1 antibodies. Dengue non-structural 1 (NS1) protein is an established serological marker for the early detection of dengue infection. A variety of commercial dengue NS1 antigen capture immunoassays are available in both ELISA and lateral flow format. However, there is a significant scope to improve both the sensitivity and the specificity of those tests. The interactions of antibody (Ab)-antigen (Ag) were profiled, with weak interactions (KD = 1-0.1 µM) able to be detected under static equilibrium conditions by RWG, but not observed to under more rigorous flow conditions using SPR. There were significant differences in the absolute affinities determined by the two technologies, and there was a poor correlation between antibodies best ranked by RWG and the lower limit of detection (LLOD) found by ELISA. Hence, whilst high-throughput RWG can be useful as preliminary screening for higher affinity antibodies, care should be exercised in the assignation of quantitative values for affinity between different assay formats.

SELECTION OF CITATIONS
SEARCH DETAIL
...