Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Toxicol ; 5: 1264238, 2023.
Article in English | MEDLINE | ID: mdl-38152552

ABSTRACT

Background: Prenatal exposures to endocrine disrupting chemicals (EDCs) are correlated with adverse behavioral outcomes, but the effects of combinations of these chemicals are unclear. The aim of this study was to determine the dose-dependent effects of prenatal exposure to EDCs on male and female behavior. Methods: Pregnant Sprague-Dawley rats were orally dosed with vehicle, bisphenol A (BPA) (5 µg/kg body weight (BW)/day), low-dose (LD) diethylhexyl phthalate (DEHP) (5 µg/kg BW/day), high-dose (HD) DEHP (7.5 mg/kg BW/day), a combination of BPA and LD-DEHP (B + D (LD)), or a combination of BPA and HD-DEHP (B + D (HD)) on gestational days 6-21. Adult offspring were subjected to the Open Field Test (OFT), Elevated Plus Maze (EPM), and Shock Probe Defensive Burying test (SPDB) in adulthood. Body, adrenal gland, and pituitary gland weights were collected at sacrifice. Corticosterone (CORT) was measured in the serum. Results: Female EDC-exposed offspring showed anxiolytic effects in the OFT, while male offspring were unaffected. DEHP (HD) male offspring demonstrated a feminization of behavior in the EPM. Most EDC-exposed male offspring buried less in the SPDB, while their female counterparts showed reduced shock reactivity, indicating sex-specific maladaptive alterations in defensive behaviors. Additionally, DEHP (LD) males and females and B + D (LD) females displayed increased immobility in this test. DEHP (LD) alone and in combination with BPA led to lower adrenal gland weights, but only in male offspring. Finally, females treated with a mixture of B + D (HD) had elevated CORT levels. Conclusion: Prenatal exposure to BPA, DEHP, or a mixture of the two, affects behavior, CORT levels, and adrenal gland weights in a sex- and dose-dependent manner.

2.
Chemosphere ; 263: 128307, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297244

ABSTRACT

Bisphenol A (BPA) and Diethylhexyl Phthalate (DEHP) are well-studied endocrine disrupting chemicals (EDCs), however, the effects of mixtures of these EDCs are not. To assess the consequences of prenatal exposure to a mixture of these EDCs, dams were orally administered either saline (control), BPA (5 µg/kg BW/day), high dose DEHP (HD-D; 7.5 mg/kg BW/day), or a combination of BPA with HD-D in experiment 1; saline, BPA (5 µg/kg BW/day), low-dose DEHP (LD-D; 5 µg/kg BW/day) or a combination of BPA with LD-D in experiment 2. Gestational weights, number of abortions, litter size and weights, number of live births and stillbirths were recorded. Morphometric measures were obtained at birth and body weight, food and water intake were monitored weekly from postnatal weeks 3-12. Offspring were sacrificed at 16-24 weeks of age and organ weights were measured. The abortion rate of dams exposed to HD-D and the mixtures, BPA + LD-D and BPA + HD-D were higher at 9, 14 and 27% respectively. Prenatal exposure to BPA or HD-D significantly decreased relative thymus weights in male but not female offspring. Apoptotic cells were detected in thymus sections of both male and female offspring prenatally exposed to DEHP. Relative heart weights increased in BPA + HD-D exposed male offspring compared to the other groups. The results indicate that a mixture of BPA and DEHP, produced a pronounced effect on pregnancy outcomes. Male offspring appear to be more susceptible to the programming effects of these EDCs or their mixture suggesting a need to reconsider the possible additive, antagonistic or synergistic effects of EDC mixtures.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Female , Humans , Male , Phenols , Pregnancy , Pregnancy Outcome , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...