Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 23(12): 1580-1588, 2020 12.
Article in English | MEDLINE | ID: mdl-33199898

ABSTRACT

Amyloid-ß (Aß) deposits are a relatively late consequence of Aß aggregation in Alzheimer's disease. When pathogenic Aß seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aß seeds before Aß deposition becomes detectable in Aß precursor protein-transgenic mice. We also characterized the different antibody recognition profiles using immunoprecipitation of size-fractionated, native, mouse and human brain-derived Aß assemblies. At least one antibody, aducanumab, after acute administration at the pre-amyloid stage, led to a significant reduction of Aß deposition and downstream pathologies 6 months later. This demonstrates that therapeutically targetable pathogenic Aß seeds already exist during the lag phase of protein aggregation in the brain. Thus, the preclinical phase of Alzheimer's disease-currently defined as Aß deposition without clinical symptoms-may be a relatively late manifestation of a much earlier pathogenic seed formation and propagation that currently escapes detection in vivo.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/antagonists & inhibitors , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/pharmacology , Brain Chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neurofilament Proteins/cerebrospinal fluid , Plaque, Amyloid/pathology , Tissue Extracts/pharmacology
2.
J Biol Chem ; 286(43): 37446-57, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21873424

ABSTRACT

The amyloid precursor protein (APP) is one of the major proteins involved in Alzheimer disease (AD). Proteolytic cleavage of APP gives rise to amyloid-ß (Aß) peptides that aggregate and deposit extensively in the brain of AD patients. Although the increase in levels of aberrantly folded Aß peptide is considered to be important to disease pathogenesis, the regulation of APP processing and Aß metabolism is not fully understood. Recently, the British precursor protein (BRI2, ITM2B) has been implicated in influencing APP processing in cells and Aß deposition in vivo. Here, we show that the wild type BRI2 protein reduces plaque load in an AD mouse model, similar to its disease-associated mutant form, ADan precursor protein (ADanPP), and analyze in more detail the mechanism of how BRI2 and ADanPP influence APP processing and Aß metabolism. We find that overexpression of either BRI2 or ADanPP reduces extracellular Aß by increasing levels of secreted insulin-degrading enzyme (IDE), a major Aß-degrading protease. This effect is also observed with BRI2 lacking its C-terminal 23-amino acid peptide sequence. Our results suggest that BRI2 might act as a receptor protein that regulates IDE levels that in turn influences APP metabolism in a previously unrecognized way. Targeting the regulation of IDE may be a promising therapeutic approach to sporadic AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Insulysin/metabolism , Membrane Proteins/metabolism , Proteolysis , Adaptor Proteins, Signal Transducing , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Humans , Insulysin/genetics , Membrane Glycoproteins , Membrane Proteins/genetics , Mice , Mice, Transgenic , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...