Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 17: 1248936, 2023.
Article in English | MEDLINE | ID: mdl-37732302

ABSTRACT

Introduction: Repeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing. Methods: To explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds 'rad' and 'lad' or paired with only the speech sound 'rad' while 'lad' was an unpaired background sound. Results: Pairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only 'rad' with VNS did not alter A1 responses. Discussion: These results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications.

2.
Brain Stimul ; 13(6): 1494-1503, 2020.
Article in English | MEDLINE | ID: mdl-32800964

ABSTRACT

BACKGROUND: Rett syndrome is a rare neurological disorder associated with a mutation in the X-linked gene MECP2. This disorder mainly affects females, who typically have seemingly normal early development followed by a regression of acquired skills. The rodent Mecp2 model exhibits many of the classic neural abnormalities and behavioral deficits observed in individuals with Rett syndrome. Similar to individuals with Rett syndrome, both auditory discrimination ability and auditory cortical responses are impaired in heterozygous Mecp2 rats. The development of therapies that can enhance plasticity in auditory networks and improve auditory processing has the potential to impact the lives of individuals with Rett syndrome. Evidence suggests that precisely timed vagus nerve stimulation (VNS) paired with sound presentation can drive robust neuroplasticity in auditory networks and enhance the benefits of auditory therapy. OBJECTIVE: The aim of this study was to investigate the ability of VNS paired with tones to restore auditory processing in Mecp2 transgenic rats. METHODS: Seventeen female heterozygous Mecp2 rats and 8 female wild-type (WT) littermates were used in this study. The rats were exposed to multiple tone frequencies paired with VNS 300 times per day for 20 days. Auditory cortex responses were then examined following VNS-tone pairing therapy or no therapy. RESULTS: Our results indicate that Mecp2 mutation alters auditory cortex responses to sounds compared to WT controls. VNS-tone pairing in Mecp2 rats improves the cortical response strength to both tones and speech sounds compared to untreated Mecp2 rats. Additionally, VNS-tone pairing increased the information contained in the neural response that can be used to discriminate between different consonant sounds. CONCLUSION: These results demonstrate that VNS-sound pairing may represent a strategy to enhance auditory function in individuals with Rett syndrome.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Perception/physiology , Rett Syndrome/physiopathology , Rett Syndrome/therapy , Vagus Nerve Stimulation/methods , Animals , Discrimination, Psychological/physiology , Female , Methyl-CpG-Binding Protein 2/genetics , Neuronal Plasticity/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rett Syndrome/genetics
4.
J Neurophysiol ; 122(2): 659-671, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31215351

ABSTRACT

Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway. In this study, we paired VNS with the presentation of a 9-kHz tone 300 times a day for 20 days. We recorded neural responses to tones from 2,950 sites in the inferior colliculus (IC), A1, anterior auditory field (AAF), and posterior auditory field (PAF) 24 h after the last pairing session in anesthetized rats. We found that VNS-tone pairing increased the percentage of IC, A1, AAF, and PAF that responds to the paired tone frequency. Across all tested auditory fields, the response strength to tones was strengthened in VNS-tone paired rats compared with control rats. VNS-tone pairing reduced spontaneous activity, frequency selectivity, and response threshold across the auditory pathway. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing. Our findings suggest that VNS paired with sound presentation is an effective method to enhance auditory processing.NEW & NOTEWORTHY Previous studies have reported primary auditory cortex plasticity following vagus nerve stimulation (VNS) paired with a sound. This study extends previous findings by documenting that fields across the auditory pathway are altered by VNS-tone pairing. VNS-tone pairing increases the percentage of each field that responds to the paired tone frequency. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways/physiology , Auditory Perception/physiology , Inferior Colliculi/physiology , Neuronal Plasticity/physiology , Vagus Nerve/physiology , Animals , Electric Stimulation , Electroencephalography , Rats
5.
Neuroscience ; 406: 290-299, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30904665

ABSTRACT

Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an auditory stimulus drives reorganization of primary auditory cortex (A1), and the magnitude of this VNS-dependent plasticity is dependent on the stimulation parameters, including intensity and pulse rate. However, there is currently little data to guide the selection of VNS train durations, an easily adjusted parameter that could influence the effect of VNS-based therapies. Here, we tested the effect of varying the duration of the VNS train on the extent of VNS-dependent cortical plasticity. Rats were exposed to a 9 kHz tone 300 times per day for 20 days. Coincident with tone presentation, groups received trains of 4, 16, or 64 pulses of VNS delivered at 30 Hz, corresponding to train durations of 0.125 s, 0.5 s, and 2.0 s, respectively. High-density microelectrode mapping of A1 revealed that 0.5 s duration VNS trains significantly increased the number of neurons in A1 that responded to tones near the paired tone frequency. Trains lasting 0.125 or 2.0 s failed to alter A1 responses, indicating that both shorter and longer stimulation durations are less effective at enhancing plasticity. A second set of experiments evaluating the effect of delivering 4 or 64 pulses in a fixed 0.5 s VNS train duration paired with tone presentation reveal that both slower and faster stimulation rates are less effective at enhancing plasticity. We incorporated these results with previous findings describing the effect of stimulation parameters on VNS-dependent plasticity and activation of neuromodulatory networks to generate a model of synaptic activation by VNS.


Subject(s)
Auditory Cortex/physiology , Neuronal Plasticity/physiology , Vagus Nerve Stimulation/methods , Animals , Female , Rats , Rats, Sprague-Dawley , Time Factors
6.
Neuroscience ; 388: 239-247, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30063940

ABSTRACT

Pairing vagus nerve stimulation (VNS) with movements or sounds can direct robust plasticity in motor or auditory cortex, respectively. The degree of map plasticity is influenced by the intensity and pulse width of VNS, number of VNS-event pairings, and the interval between each pairing. It is likely that these parameters interact, influencing optimal implementation of VNS pairing protocols. We varied VNS intensity, number of stimulations, and inter-stimulation interval (ISI) to test for interactions among these parameters. Rats were implanted with a vagus nerve stimulating cuff and randomly assigned to one of three treatment groups to receive 20 days of VNS paired with a 9-kHz tone: (1) Fast VNS: 50 daily pairings of 400-µA VNS with a 30-s ISI; (2) Dispersed VNS: 50 daily pairings of 400-µA VNS with a 180-s ISI; and (3) Standard VNS: 300 daily pairings of 800-µA VNS with a 30-s ISI. Following 20 days of VNS-tone pairing, multi-unit recordings were conducted in primary auditory cortex (A1) and receptive field properties were analyzed. Increasing ISI (Dispersed VNS) did not lead to an enhancement of cortical plasticity. Reducing the current intensity and number of stimulations (Fast VNS) resulted in robust cortical plasticity, using 6 times fewer VNS pairings than the Standard protocol. These findings reveal an interaction between current intensity, stimulation number, and ISI and identify a novel VNS paradigm that is substantially more efficient than the previous standard paradigm.


Subject(s)
Auditory Cortex/physiology , Neuronal Plasticity , Vagus Nerve Stimulation/methods , Acoustic Stimulation , Animals , Female , Neuronal Plasticity/physiology , Random Allocation , Rats, Sprague-Dawley
7.
Autism Res ; 11(1): 59-68, 2018 01.
Article in English | MEDLINE | ID: mdl-29052348

ABSTRACT

Individuals with SHANK3 mutations have severely impaired receptive and expressive language abilities. While brain responses are known to be abnormal in these individuals, the auditory cortex response to sound has remained largely understudied. In this study, we document the auditory cortex response to speech and non-speech sounds in the novel Shank3-deficient rat model. We predicted that the auditory cortex response to sounds would be impaired in Shank3-deficient rats. We found that auditory cortex responses were weaker in Shank3 heterozygous rats compared to wild-type rats. Additionally, Shank3 heterozygous responses had less spontaneous auditory cortex firing and were unable to respond well to rapid trains of noise bursts. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome. Autism Res 2018, 11: 59-68. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Individuals with SHANK3 mutations have severely impaired language abilities, yet the auditory cortex response to sound has remained largely understudied. In this study, we found that auditory cortex responses were weaker and were unable to respond well to rapid sounds in Shank3-deficient rats compared to control rats. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome.


Subject(s)
Acoustic Stimulation , Auditory Cortex/physiopathology , Auditory Perception/physiology , Nerve Tissue Proteins/deficiency , Animals , Disease Models, Animal , Female , Humans , Male , Rats
8.
Neurobiol Dis ; 83: 26-34, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26321676

ABSTRACT

Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , Neurons/physiology , Phonetics , Rett Syndrome/physiopathology , Acoustic Stimulation , Animals , Discrimination, Psychological/physiology , Disease Models, Animal , Evoked Potentials, Auditory , Female , Gene Knockout Techniques , Methyl-CpG-Binding Protein 2/genetics , Noise , Rats , Rats, Sprague-Dawley , Rett Syndrome/genetics
9.
Behav Brain Res ; 287: 256-64, 2015.
Article in English | MEDLINE | ID: mdl-25827927

ABSTRACT

Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination.


Subject(s)
Auditory Cortex/physiology , Neuronal Plasticity , Speech Perception/physiology , Acoustic Stimulation , Animals , Discrimination, Psychological , Evoked Potentials, Auditory , Phonetics , Rats
10.
Brain Res ; 1564: 72-84, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24713347

ABSTRACT

Fragile X syndrome is the most common inherited form of intellectual disability and the leading genetic cause of autism. Impaired phonological processing in fragile X syndrome interferes with the development of language skills. Although auditory cortex responses are known to be abnormal in fragile X syndrome, it is not clear how these differences impact speech sound processing. This study provides the first evidence that the cortical representation of speech sounds is impaired in Fmr1 knockout rats, despite normal speech discrimination behavior. Evoked potentials and spiking activity in response to speech sounds, noise burst trains, and tones were significantly degraded in primary auditory cortex, anterior auditory field and the ventral auditory field. Neurometric analysis of speech evoked activity using a pattern classifier confirmed that activity in these fields contains significantly less information about speech sound identity in Fmr1 knockout rats compared to control rats. Responses were normal in the posterior auditory field, which is associated with sound localization. The greatest impairment was observed in the ventral auditory field, which is related to emotional regulation. Dysfunction in the ventral auditory field may contribute to poor emotional regulation in fragile X syndrome and may help explain the observation that later auditory evoked responses are more disturbed in fragile X syndrome compared to earlier responses. Rodent models of fragile X syndrome are likely to prove useful for understanding the biological basis of fragile X syndrome and for testing candidate therapies.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , Discrimination, Psychological/physiology , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/physiopathology , Neurons/physiology , Animals , Disease Models, Animal , Gene Knockout Techniques , Male , Phonetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...