Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Stimul ; 11(6): 1218-1224, 2018.
Article in English | MEDLINE | ID: mdl-30037658

ABSTRACT

BACKGROUND: Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an external event can reorganize the sensory or motor cortex. A 30 Hz train of sixteen VNS pulses paired with a tone significantly increases the number of neurons in primary auditory cortex (A1) that respond to tones near the paired tone frequency. The effective range of VNS pulse rates for driving cortical map plasticity has not been defined. OBJECTIVE/HYPOTHESIS: This project investigated the effects of VNS rate on cortical plasticity. We expected that VNS pulse rate would affect the degree of plasticity caused by VNS-tone pairing. METHODS: Rats received sixteen pulses of VNS delivered at a low (7.5 Hz), moderate (30 Hz), or high (120 Hz) rate paired with 9 kHz tones 300 times per day over a 20 day period. RESULTS: More A1 neurons responded to the paired tone frequency in rats from the moderate rate VNS group compared to naïve controls. The response strength was also increased in these rats. In contrast, rats that received high or low rate VNS failed to exhibit a significant increase in the number of neurons tuned to sounds near 9 kHz. CONCLUSION: Our results demonstrate that the degree of cortical plasticity caused by VNS-tone pairing is an inverted-U function of VNS pulse rate. The apparent high temporal precision of VNS-tone pairing helps identify optimal VNS parameters to achieve the beneficial effects from restoration of sensory or motor function.


Subject(s)
Auditory Cortex/physiology , Brain Mapping/methods , Neuronal Plasticity/physiology , Vagus Nerve Stimulation/methods , Vagus Nerve/physiology , Animals , Female , Rats , Rats, Sprague-Dawley
2.
Ecotoxicol Environ Saf ; 35(1): 7-15, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8930500

ABSTRACT

Bioaccumulation of selenium (Se) in the fish community of Pigeon River/Pigeon Lake, which receives inputs of Se from a coal fly ash disposal facility, was studied to assess potential hazards of Se to fish, wildlife, and humans. Se concentrations in fish from sites receiving seepage and effluents from fly ash disposal ponds were significantly greater than those in fish from upstream, where Se concentrations were near background concentrations. Se concentrations differed among fish species, and interspecific variation was greatest at the most contaminated locations. Differences in Se bioaccumulation among fish species were not consistently associated with differences in trophic status. Although Se concentrations in northern pike were consistently less than those in likely prey species, large yellow perch contained Se concentrations as great as those in spottail shiners, their likely prey. Se bioaccumulation may have been influenced by differences in habitat preferences, as limnetic species generally contained greater Se concentrations than benthic species. Se concentrations in fish from the lower Pigeon River and Pigeon Lake did not exceed lowest observable adverse effect concentrations (LOAECs) for Se in tissues of fish species, but exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals. Human consumption of moderate quantities of fish from the areas studied should not result in excessive Se intake.


Subject(s)
Fishes/metabolism , Selenium/metabolism , Water Pollutants, Chemical/toxicity , Analysis of Variance , Animals , Environmental Exposure , Fresh Water/analysis , Industrial Waste , Michigan , Quality Control , Selenium/toxicity , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL