Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 15736, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30356084

ABSTRACT

Organic carbon accumulation in the sediments of inland aquatic and coastal ecosystems is an important process in the global carbon budget that is subject to intense human modification. To date, research has focused on quantifying accumulation rates in individual or groups of aquatic ecosystems to quantify the aquatic carbon sinks. However, there hasn't been a synthesis of rates across aquatic ecosystem to address the variability in rates within and among ecosystems types. Doing so would identify gaps in our understanding of accumulation rates and potentially reveal carbon sinks vulnerable to change. We synthesized accumulation rates from the literature, compiling 464 rate measurements from 103 studies of carbon accumulated in the modern period (ca. 200 years). Accumulation rates from the literature spanned four orders of magnitude varying substantially within and among ecosystem categories, with mean estimates for ecosystem categories ranging from 15.6 to 73.2 g C m-2 y-1 within ecosystem categories. With the exception of lakes, mean accumulation rates were poorly constrained due to high variability and paucity of data. Despite the high uncertainty, the estimates of modern accumulation rate compiled here are an important step for constructing carbon budgets and predicting future change.


Subject(s)
Carbon Sequestration , Ecosystem , Human Activities/trends , Humans , Kinetics , Water/chemistry
2.
Proc Natl Acad Sci U S A ; 114(2): 352-357, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28028234

ABSTRACT

Directional change in environmental drivers sometimes triggers regime shifts in ecosystems. Theory and experiments suggest that regime shifts can be detected in advance, and perhaps averted, by monitoring resilience indicators such as variance and autocorrelation of key ecosystem variables. However, it is uncertain whether management action prompted by a change in resilience indicators can prevent an impending regime shift. We caused a cyanobacterial bloom by gradually enriching an experimental lake while monitoring an unenriched reference lake and a continuously enriched reference lake. When resilience indicators exceeded preset boundaries, nutrient enrichment was stopped in the experimental lake. Concentrations of algal pigments, dissolved oxygen saturation, and pH rapidly declined following cessation of nutrient enrichment and became similar to the unenriched lake, whereas a large bloom occurred in the continuously enriched lake. This outcome suggests that resilience indicators may be useful in management to prevent unwanted regime shifts, at least in some situations. Nonetheless, a safer approach to ecosystem management would build and maintain the resilience of desirable ecosystem conditions, for example, by preventing excessive nutrient input to lakes and reservoirs.


Subject(s)
Cyanobacteria/physiology , Eutrophication/physiology , Ecosystem , Environmental Monitoring/methods , Lakes/microbiology , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...