Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Methods Mol Biol ; 2603: 199-207, 2023.
Article in English | MEDLINE | ID: mdl-36370281

ABSTRACT

The super-SILAC approach enables the quantitative proteome profiling of highly complex samples such as biological tissues or whole organisms. In this approach, a super-SILAC mix consisting of heavy isotope-labeled cells representative of the tissue or organism to be analyzed is mixed with the unlabeled samples of interest, such that the labeled proteins act as a spike-in standard, thus allowing the relative quantification of proteins between the samples of interest. In this chapter, we thoroughly describe the protocol to carry out the super-SILAC approach using a common in vivo model such as zebrafish larvae.


Subject(s)
Proteome , Proteomics , Animals , Isotope Labeling/methods , Proteome/metabolism , Proteomics/methods , Zebrafish/metabolism , Larva/metabolism
2.
Nanomaterials (Basel) ; 12(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630985

ABSTRACT

Silver nanoparticles (AgNPs) are currently used in many different industrial, commercial and health fields, mainly due to their antibacterial properties. Due to this widespread use, humans and the environment are increasingly exposed to these types of nanoparticles, which is the reason why the evaluation of the potential toxicity associated with AgNPs is of great importance. Although some of the toxic effects induced by AgNPs have already been shown, the elucidation of more complete mechanisms is yet to be achieved. In this sense, and since the integration of metabolomics and transcriptomics approaches constitutes a very useful strategy, in the present study targeted and untargeted metabolomics and DNA microarrays assays have been combined to evaluate the molecular mechanisms involved in the toxicity induced by 10 nm AgNPs. The results have shown that AgNPs induce the synthesis of glutathione as a cellular defense mechanism to face the oxidative environment, while inducing the depletion of relevant molecules implicated in the synthesis of important antioxidants. In addition, it has been observed that AgNPs completely impair the intracellular energetic metabolism, especially affecting the production of adenosine triphosphate (ATP) and disrupting the tricarboxylic acids cycle. It has been demonstrated that AgNPs exposure also affects the glycolysis pathway. The effect on such pathway differs depending on the step of the cycle, which a significant increase in the levels of glucose as way to counterbalance the depleted levels of ATP.

SELECTION OF CITATIONS
SEARCH DETAIL
...