Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Implant Dent ; 27(6): 660-666, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30281536

ABSTRACT

PURPOSE: This study aimed to compare in vivo osteogenesis on rough threaded dental implants with and without calcium phosphate (CaP) coating deposition, alone or in association with low-level laser therapy (LLLT) by gallium aluminum arsenide. MATERIAL AND METHODS: Four groups were studied: G1: implant; G2: implant + CaP coating; G3: implant + LLLT; and G4: implant + CaP coating + LLLT. LLLT was applied for 7 days at the surgical site before and after placing the implant. Topographic characterization was performed before surgery using scanning electron microscopy and energy dispersion spectrophotometry. Bone-implant contact (BIC) was measured after 1, 2, and 6 weeks and reverse torque after 6 weeks. In short periods, G2, G3, and G4 showed significantly greater BIC than G1 (P < 0.05), but no difference in BIC was observed at 6 weeks. However, the values for the removal torque test at 6 weeks were higher in G2 and G4 (P < 0.05). CONCLUSION: Both CaP coating alone and using LLLT induce cellular stimulation and improve BIC in short-term healing, resulting in higher implant fixation, and should be considered in clinical practice due to their low cost and high effectiveness.


Subject(s)
Calcium Phosphates/therapeutic use , Dental Implantation, Endosseous , Dental Implants , Low-Level Light Therapy , Osteogenesis , Animals , Dental Implantation, Endosseous/instrumentation , Dental Implantation, Endosseous/methods , Low-Level Light Therapy/methods , Male , Osteogenesis/drug effects , Osteogenesis/radiation effects , Rabbits , Wound Healing/drug effects , Wound Healing/radiation effects
2.
PLoS One ; 13(5): e0196169, 2018.
Article in English | MEDLINE | ID: mdl-29771925

ABSTRACT

Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but ß type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1-commercially pure Ti group (CpTi); G2-Ti-6Al-4V alloy; G3-Ti-13 Niobium-13 Zirconium alloy; G4-Ti-35 Niobium alloy; G5-Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (µCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5µm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical application since they contributed to excellent cellular behavior and osseointegration besides presenting lower elastic modulus.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Titanium/chemistry , Titanium/pharmacology , Alkaline Phosphatase/metabolism , Animals , Calcification, Physiologic/drug effects , Cell Survival/drug effects , Cytokines/biosynthesis , Gene Expression Regulation/drug effects , Osseointegration/drug effects , Osteogenesis/drug effects , Porosity , Powders , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...