Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 15(1): 57, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35596177

ABSTRACT

BACKGROUND: The need to mitigate and substitute the use of fossil fuels as the main energy matrix has led to the study and development of biofuels as an alternative. Second-generation (2G) ethanol arises as one biofuel with great potential, due to not only maintaining food security, but also as a product from economically interesting crops such as energy-cane. One of the main challenges of 2G ethanol is the inefficient uptake of pentose sugars by industrial yeast Saccharomyces cerevisiae, the main organism used for ethanol production. Understanding the main drivers for xylose assimilation and identify novel and efficient transporters is a key step to make the 2G process economically viable. RESULTS: By implementing a strategy of searching for present motifs that may be responsible for xylose transport and past adaptations of sugar transporters in xylose fermenting species, we obtained a classifying model which was successfully used to select four different candidate transporters for evaluation in the S. cerevisiae hxt-null strain, EBY.VW4000, harbouring the xylose consumption pathway. Yeast cells expressing the transporters SpX, SpH and SpG showed a superior uptake performance in xylose compared to traditional literature control Gxf1. CONCLUSIONS: Modelling xylose transport with the small data available for yeast and bacteria proved a challenge that was overcome through different statistical strategies. Through this strategy, we present four novel xylose transporters which expands the repertoire of candidates targeting yeast genetic engineering for industrial fermentation. The repeated use of the model for characterizing new transporters will be useful both into finding the best candidates for industrial utilization and to increase the model's predictive capabilities.

2.
Microb Biotechnol ; 14(5): 2101-2115, 2021 09.
Article in English | MEDLINE | ID: mdl-34313008

ABSTRACT

The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.


Subject(s)
Cation Transport Proteins , Saccharomyces cerevisiae Proteins , Biomass , Fermentation , Metabolic Engineering , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Xylose
3.
Biotechnol Biofuels ; 13: 145, 2020.
Article in English | MEDLINE | ID: mdl-32818042

ABSTRACT

BACKGROUND: The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineered Saccharomyces cerevisiae strains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeast S. cerevisiae is not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes. RESULTS: Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeast Candida sojae as a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters. CONCLUSIONS: Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast.

SELECTION OF CITATIONS
SEARCH DETAIL
...