Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 475(2227): 20180838, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31423086

ABSTRACT

Mechanical heterogeneity in biological tissues, in particular stiffness, can be used to distinguish between healthy and diseased states. However, it is often difficult to explore relationships between cellular-level properties and tissue-level outcomes when biological experiments are performed at a single scale only. To overcome this difficulty, we develop a multi-scale mathematical model which provides a clear framework to explore these connections across biological scales. Starting with an individual-based mechanical model of cell movement, we subsequently derive a novel coarse-grained system of partial differential equations governing the evolution of the cell density due to heterogeneous cellular properties. We demonstrate that solutions of the individual-based model converge to numerical solutions of the coarse-grained model, for both slowly-varying-in-space and rapidly-varying-in-space cellular properties. We discuss applications of the model, such as determining relative cellular-level properties and an interpretation of data from a breast cancer detection experiment.

2.
Biomech Model Mechanobiol ; 15(1): 43-67, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26239380

ABSTRACT

We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and mechanical adaptation of the tissue. Both microscopic and tissue-scale stress/strain states of the tissue are calculated from macroscopic loads by a combination of beam theory and micromechanical homogenisation. This model is applied to simulate the spatio-temporal evolution of a human midshaft femur scan subjected to two deregulating circumstances: (i) osteoporosis and (ii) mechanical disuse. Both simulated deregulations led to endocortical bone loss, cortical wall thinning and expansion of the medullary cavity, in accordance with experimental findings. Our model suggests that these observations are attributable to a large extent to the influence of the microstructure on bone turnover rate. Mechanical adaptation is found to help preserve intracortical bone matrix near the periosteum. Moreover, it leads to non-uniform cortical wall thickness due to the asymmetry of macroscopic loads introduced by the bending moment. The effect of mechanical adaptation near the endosteum can be greatly affected by whether the mechanical stimulus includes stress concentration effects or not.


Subject(s)
Bone Remodeling , Bone Resorption/physiopathology , Femur/physiopathology , Models, Biological , Muscular Disorders, Atrophic/physiopathology , Osteoporosis/physiopathology , Aged, 80 and over , Biomechanical Phenomena , Bone Resorption/complications , Bone Resorption/pathology , Calibration , Computer Simulation , Feedback, Physiological , Femur/diagnostic imaging , Femur/pathology , Hormones/metabolism , Humans , Muscular Disorders, Atrophic/pathology , Organ Size , Osteoporosis/complications , Osteoporosis/pathology
3.
Bone ; 72: 109-17, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25433340

ABSTRACT

A characteristic relationship for bone between bone volume fraction (BV/TV) and specific surface (BS/TV) has previously been proposed based on 2D histological measurements. This relationship has been suggested to be bone intrinsic, i.e., to not depend on bone type, bone site and health state. In these studies, only limited data comes from cortical bone. The aim of this paper was to investigate the relationship between BV/TV and BS/TV in human cortical bone using high-resolution micro-CT imaging and the correlations with subject-specific biometric data such as height, weight, age and sex. Images from femoral cortical bone samples of the Melbourne Femur Collection were obtained using synchrotron radiation micro-CT (SPring8, Japan). Sixteen bone samples from thirteen individuals were analysed in order to find bone volume fraction values ranging from 0.20 to 1. Finally, morphological models of the tissue microstructure were developed to help explain the relationship between BV/TV and BS/TV. Our experimental findings indicate that the BV/TV vs BS/TV relationship is subject specific rather than intrinsic. Sex and pore density were statistically correlated with the individual curves. However no correlation was found with body height, weight or age. Experimental cortical data points deviate from interpolating curves previously proposed in the literature. However, these curves are largely based on data points from trabecular bone samples. This finding challenges the universality of the curve: highly porous cortical bone is significantly different to trabecular bone of the same porosity. Finally, our morphological models suggest that changes in BV/TV within the same sample can be explained by an increase in pore area rather than in pore density. This is consistent with the proposed mechanisms of age-related endocortical bone loss. In addition, these morphological models highlight that the relationship between BV/TV and BS/TV is not linear at high BV/TV as suggested in the literature but is closer to a square root function.


Subject(s)
Bone and Bones/pathology , Porosity , Aged , Aged, 80 and over , Body Height , Body Weight , Bone Density , Computer Simulation , Female , Femur/pathology , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Models, Theoretical , Reproducibility of Results , Synchrotrons
4.
Bone ; 48(4): 918-26, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21172465

ABSTRACT

Bone remodelling maintains the functionality of skeletal tissue by locally coordinating bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts) in the form of Bone Multicellular Units (BMUs). Understanding the emergence of such structured units out of the complex network of biochemical interactions between bone cells is essential to extend our fundamental knowledge of normal bone physiology and its disorders. To this end, we propose a spatio-temporal continuum model that integrates some of the most important interaction pathways currently known to exist between cells of the osteoblastic and osteoclastic lineage. This mathematical model allows us to test the significance and completeness of these pathways based on their ability to reproduce the spatio-temporal dynamics of individual BMUs. We show that under suitable conditions, the experimentally observed structured cell distribution of cortical BMUs is retrieved. The proposed model admits travelling-wave-like solutions for the cell densities with tightly organised profiles, corresponding to the progression of a single remodelling BMU. The shapes of these spatial profiles within the travelling structure can be linked to the intrinsic parameters of the model such as differentiation and apoptosis rates for bone cells. In addition to the cell distribution, the spatial distribution of regulatory factors can also be calculated. This provides new insights on how different regulatory factors exert their action on bone cells leading to cellular spatial and temporal segregation, and functional coordination.


Subject(s)
Bone and Bones/anatomy & histology , Models, Theoretical , Humans
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 1): 011114, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18351825

ABSTRACT

We present an entirely microscopic calculation of the Casimir force f(d) between two metallic plates in the limit of large separation d . The models of metals consist of mobile quantum charges in thermal equilibrium with the photon field at positive temperature T . Fluctuations of all degrees of freedom, matter and field, are treated according to the principles of quantum electrodynamics and statistical physics without recourse to approximations or intermediate assumptions. Our main result is the correctness of the asymptotic universal formula f(d) approximately -zeta(3)kBT/8pid3, d-->infinity. This supports the fact that, in the framework of the Lifshitz theory of electromagnetic fluctuations, transverse electric modes do not contribute in this regime. Moreover, the microscopic origin of universality is seen to rely on perfect screening sum rules that hold in great generality for conducting media.

SELECTION OF CITATIONS
SEARCH DETAIL
...