Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 371: 131199, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34598122

ABSTRACT

Antiglycation activities of herbs and spices, have been described in relation to their in vivo anti-diabetic or anti-aging activity at physiological temperature. Under the hypothesis that those natural antioxidants may inhibit the formation of Maillard intermediates, the behavior of several hydroalcoholic plant extracts was analyzed in sugar-protein systems. Allspice, thyme, green pepper and black pepper extracts were the most efficient inhibitors, decreasing furosine formation by 60, 45, 40 and 30%, respectively. 5-hydroxymethyl-2-furfural formation decreased in the presence of the extracts and protein glycation was inhibited by the thyme extract in advanced stages. Antiglycation activities were related to polyphenols content, to radical scavenging and to iron-reducing power. In the protein-sugar systems studied at the time in which 4000 ppm of furosine were formed, the antioxidant activity dropped between 30 and 40%. Polyphenols inhibit Maillard intermediates formation, revealing the incidence of oxidative pathways, but they are depleted as a function of time.


Subject(s)
Antioxidants , Spices , Antioxidants/analysis , Plant Extracts , Plants, Edible , Sugars
2.
Food Chem ; 373(Pt A): 131422, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34710693

ABSTRACT

Solids-water interactions of corn and quinoa flours were evaluated through 1H NMR, DSC, and water sorption isotherms. Glass transition temperature (Tg), observed by DSC, was better distinguished through FID signals, and correlated to water content through the Gordon and Taylor model. Enthalpy relaxations, identified by thermal analysis at 50-70 °C were studied through transverse relaxation times (T2) measured after Hahn spin-echo sequence, which revealed a rearrangement of the biopolymers structures that cause immobilization of polymer chains and reduced mobility of water molecules with weak interactions with solids (lower T22). The higher lipid content of quinoa flour was manifested after the CPMG sequence (T2 ≈ 100 ms) and caused reduced hygroscopicity and Tg values compared with corn flour systems. 1H NMR resulted efficient for assigning proton populations and understanding the changes in their distribution with temperature, analyzing glass transition and interpreting the implications of enthalpy relaxations processes in corn and quinoa flours.


Subject(s)
Chenopodium quinoa , Water , Flour , Proton Magnetic Resonance Spectroscopy , Protons , Vitrification , Zea mays
3.
Food Chem ; 316: 126280, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32058192

ABSTRACT

Green pepper (Piper nigrum) presents high levels of functional compounds, with antioxidant and anti-glycation properties. Thus, the optimization of the ß-cyclodextrin-based extraction of functional compounds from green pepper through Response Surface Methodology was performed. The optimum extraction conditions were assessed by optimizing total polyphenolic content (TPC) and antioxidant activity (DPPH• and FRAP methods). 15 mM for ß-CD solution, 5 min of ultrasonication and 41 °C were the optimum extraction conditions, with the TPC of 24.9 mg GAE/mL and the anti-radical activities were 3.1 mg GAE/mL (DPPH• assay) and 0.45 mg GAE/mL (FRAP method). This natural extract obtained through eco-friendly techniques proved to be effective to reduce the formation of hydroxymethylfurfural, a glycation marker, at 70 and 80 °C. GPE presented higher TPC than black and white pepper. The relationship between the antioxidant and anti-glycation properties was confirmed and green pepper and can be proposed as a natural potential anti-glycation agent.


Subject(s)
Antioxidants/chemistry , Piper nigrum/chemistry , Glycosylation , beta-Cyclodextrins/chemistry
4.
Food Res Int ; 114: 97-103, 2018 12.
Article in English | MEDLINE | ID: mdl-30361032

ABSTRACT

The development of non-enzymatic browning in the presence of MgCl2 was evaluated in liquid and dehydrated sucrose-glycine model systems, in relation to interactions of the salt with water and/or with sucrose. In both systems, browning was accelerated by the presence of MgCl2 because of the increased sugar hydrolysis (ten times faster) and the reduction of water mobility (1H NMR T2 relaxation times) caused by this salt (between 6 and 14% lower), counteracting the inhibitory effect of water on the Maillard reaction. MgCl2 also provoked a 40% reduction on the fluorophores quantum yield, responsible also of the fluctuations observed in the fluorescence development as a function of time after 50 h at 70 °C. Molecular and supramolecular effects of the presence of MgCl2 have been observed on the Maillard reaction kinetics. These results are of high technological interest when strategies to control the Maillard reaction rate are required for a particular application.


Subject(s)
Glycine/chemistry , Magnesium Chloride/chemistry , Maillard Reaction , Models, Chemical , Sucrose/chemistry , Hot Temperature , Kinetics , Magnetic Resonance Spectroscopy , Water
5.
Food Chem ; 265: 86-95, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29884399

ABSTRACT

Thyme (Thymus vulgaris) has been demonstrated to extend the shelf-life of food products, being also a potential source of bioactive compounds. The aim of this research was to optimize the ultrasound assisted extraction employing ß-cyclodextrin aqueous solutions as no-contaminant technology and Response Surface Methodology to obtain thyme extracts with the maximum antioxidant capacity. The optimal extraction conditions were: a solution of ß-ciclodextrin 15 mM, an ultrasonic treatment time of 5.9 min at a temperature of 36.6 °C. They resulted in an extract with a polyphenolic content of 189.3 mg GAE/mL, an antioxidant activity (DPPH) of 14.8 mg GAE/mL, and ferric reducing/antioxidant power (FRAP) of 3.3 mg GAE/mL. Interestingly, the extract demonstrated to inhibit the production of Maillard browning products and can be considered a potential antiglycant agent. The obtained data is important for developing eco-friendly technologies in order to obtain natural antioxidant extracts with a potential inhibitory capacity of Maillard glycation reaction.


Subject(s)
Chemical Fractionation/methods , Maillard Reaction , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Thymus Plant/chemistry , beta-Cyclodextrins/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Ultrasonic Waves
6.
Food Chem ; 135(3): 1685-91, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22953910

ABSTRACT

The aim of this work was to study colour and surface fluorescence development in relation to the chemical markers for the Maillard reaction at the cooking, flaking and toasting stages of cornflake production process. Colour was measured by a calibrated computer vision system. Surface fluorescence was measured on compressed samples. Aqueous extracted Maillard reaction markers (hydroxymethylfurfural, carboxymethyl-lysine, absorbance at 420nm and total fluorescence) were measured on protease hydrolyzed samples. Sample microstructure was observed by scanning electron microscopy. During cooking the colour coordinates L(∗) and b(∗) decreased and a(∗) increased. After flaking, the samples appeared lighter, while the pigment concentration, fluorescence and hydroxymethylfurfural did not change. Toasting generated bubbles in the matrix and L(∗) apparently increased, although brown pigment concentration increased. Pigment concentration did not correlate with surface colour due to the destruction or generation of interfaces. Surface and microstructure effects can be avoided by milling and compressing the samples.


Subject(s)
Food Handling/methods , Zea mays/chemistry , Color , Fluorescence , Hydrolysis , Maillard Reaction
7.
Carbohydr Res ; 345(2): 303-8, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-19962131

ABSTRACT

It has been suggested that the crystallization of a sugar hydrate can provide additional desiccation by removing water from the amorphous phase, thereby increasing the glass transition temperature (T(g)). However, present experiments demonstrated that in single sugar systems, if relative humidity is enough for sugar crystallization, the amorphous phase will have a short life. In the conditions of the present experiments, more than 75% of amorphous phase crystallized in less than one month. The good performance of sugars that form hydrated crystals (trehalose and raffinose) as bioprotectants in dehydrated systems is related to the high amount of water needed to form crystals, but not to the decreased water content or increased T(g) of the amorphous phase. The latter effect is only temporary, and presumably shorter than the expected shelf life of pharmaceuticals or food ingredients, and is related to thermodynamic reasons: if there is enough water for the crystal to form, it will readily form.


Subject(s)
Glass/chemistry , Phase Transition , Raffinose/chemistry , Trehalose/chemistry , Water/chemistry , Crystallization , Freeze Drying , Humidity , Kinetics , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...