Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 78(9): 3229-33, 2012 May.
Article in English | MEDLINE | ID: mdl-22367084

ABSTRACT

In this study, we examine the temporal pattern of colony appearance during cultivation experiments, and whether this pattern could inform on optimizing the process of microbial discovery. In a series of long-term cultivation experiments, we observed an expected gradual increase over time of the total number of microbial isolates, culminating in a 700-fold colony count increase at 18 months. Conventional thought suggests that long-term incubations result in a culture collection enriched with species that are slow growing or rare, may be unavailable from short-term experiments, and likely are novel. However, after we examined the phylogenetic novelty of the isolates as a function of the time of their isolation, we found no correlation between the two. The probability of discovering either a new or rare species late in the incubation matched that of species isolated earlier. These outcomes are especially notable because of their generality: observations were essentially identical for marine and soil bacteria as well as for spore formers and non-spore formers. These findings are consistent with the idea of the stochastic awakening of dormant cells, thus lending support to the scout model. The process of microbial discovery is central to the study of environmental microorganisms and the human microbiome. While long-term incubation does not appear to increase the probability of discovering novel species, the technology enabling such incubations, i.e., single-cell cultivation, may still be the method of choice. While it does not necessarily allow more species to grow from a given inoculum, it minimizes the overall isolation effort and supplies needed.


Subject(s)
Bacteria/growth & development , Bacteria/isolation & purification , Bacteriological Techniques/methods , Biodiversity , Bacteria/classification , Humans , Metagenome , Molecular Sequence Data , Sequence Analysis, DNA , Soil Microbiology , Time Factors , Water Microbiology
2.
Appl Environ Microbiol ; 78(9): 3221-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22367083

ABSTRACT

We recently proposed a scout model of the microbial life cycle (S. S. Epstein, Nature 457:1083, 2009), the central element of which is the hypothesis that dormant microbial cells wake up into active (so-called scout) cells stochastically, independently of environmental cues. Here, we check the principal prediction of this hypothesis: under growth-permissive conditions, dormant cells initiate growth at random time intervals and exhibit no species-specific lag phase. We show that a range of microorganisms, including environmental species, Escherichia coli, and Mycobacterium smegmatis, indeed wake up in a seemingly stochastic manner and independently of environmental conditions, even in the longest incubations conducted (months to years long). As is implicit in the model, most of the cultures we obtained after long incubations were not inherently slow growers. Of the environmental isolates that required ≥7 months to form visible growth, only 5% needed an equally long incubation upon subculturing, with the majority exhibiting regrowth within 24 to 48 h. This apparent change was not a result of adaptive mutation; rather, most microbial species that appear to be slow growers were in fact fast growers with a delayed initiation of division. Genuine slow growth thus appears to be less significant than previously believed. Random, low-frequency exit from the nongrowing state may be a key element of a general microbial survival strategy, and the phylogenetic breadth of the organisms exhibiting such exit indicates that it represents a general phenomenon. The stochasticity of awakening can also provide a parsimonious explanation to several microbiological observations, including the apparent randomness of latent infections and the existence of viable-but-nonculturable cells (VBNC).


Subject(s)
Adaptation, Physiological , Escherichia coli/physiology , Mycobacterium smegmatis/physiology , Cell Cycle , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Microbial Viability , Molecular Sequence Data , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...