Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmazie ; 74(1): 18-22, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30782245

ABSTRACT

The electrochemical behavior of the echinocandin antifungals anidulafungin (AF) and micafungin (MF) has been investigated by differential pulse polarography (DPP). The measurements were carried out in a supporting electrolyte solution consisting of Britton-Robinson buffer and methanol at various substance concentrations and pH values. An amperometric cell with a three electrode system consisting of a dropping mercury electrode (DME) as working electrode, an auxiliary platinum electrode and an Ag/AgCl reference electrode was used in all experiments. AF was electrochemically reduced at potentials between -1.3 and -1.5 V. MF showed a first reduction peak (a) between -1.0 and -1.4 V and a second peak (b) between -1.5 and -1.8 V. A strong pH-dependence was observed, with optimal results at pH 2.0-3.0 for the AF peak, pH 2.0 for the MF peak (a) and pH 5.0 for the MF peak (b). A linear correlation between the concentration and the peak current has been demonstrated for all reduction peaks. MF peak (a) showed a similar behavior to the AF peak regarding shape, peak current and pH-dependence. Therefore, it can be assumed that both reductions are based on the same mechanism, a two-step reduction of the N-acyl group.


Subject(s)
Anidulafungin/analysis , Antifungal Agents/analysis , Micafungin/analysis , Polarography/methods , Electrochemistry/methods , Electrodes , Hydrogen-Ion Concentration , Mercury/chemistry , Polarography/instrumentation
2.
Pharmazie ; 70(6): 374-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26189297

ABSTRACT

The electrochemical behavior of the azole antifungal agents itraconazole, posaconazole and ketoconazole has been investigated at a glassy carbon working electrode using cyclic voltammetry. All measurements were carried out in a supporting electrolyte solution consisting of a 1:1 (v/v) mixture of 0.1 mol L(-1) sodium phosphate buffers and acetonitrile at various substance concentrations and pH values. An amperometric cell with a three electrode system consisting of a working electrode, a palladium reference electrode and a platinum disk as the auxiliary electrode was used in all experiments. All azoles showed a similar electrochemical behavior involving two reactions. An irreversible oxidation occurred at potentials of about 0.5V. A reduction peak was detected at potentials between -0.28V and -0.14V with an associated oxidation peak, which was observed in consecutive repeated measurements at potentials between -0.03 and 0.28 V. The reduction and corresponding oxidation can be regarded as a quasi-reversible process. The proposed reaction mechanisms are an irreversible oxidation of the piperazine moiety at higher potentials as well as a reduction at lower potentials of the carbonyl group of the triazolone moiety in the case of itraconazole and posaconazole or a reduction of the methoxy group of ketoconazole.


Subject(s)
Antifungal Agents/chemistry , Itraconazole/chemistry , Ketoconazole/chemistry , Triazoles/chemistry , Carbon , Electrochemical Techniques , Electrochemistry , Electrodes , Indicators and Reagents , Solutions
6.
J Biol Chem ; 263(24): 12049-55, 1988 Aug 25.
Article in English | MEDLINE | ID: mdl-3403560

ABSTRACT

The ocean pout (Macrozoarces americanus) produces a set of antifreeze proteins that depresses the freezing point of its blood by binding to, and inhibiting the growth of, ice crystals. The amino acid sequences of all the major components of the ocean pout antifreeze proteins, including the immunologically distinct QAE component, have been derived by Edman degradation. In addition, sequences of several minor components were deduced from DNA sequencing of cDNA and genomic clones. Fifty percent of the amino acids are perfectly conserved in all these proteins as well as in two homologous sequences from the distantly related wolffish. Several of the conserved residues are threonines and asparagines, amino acids that have been implicated in ice binding in the structurally unrelated antifreeze protein of the righteye flounders. Aside from minor differences in post-translational modifications, heterogeneity in antifreeze protein components stems from amino acid differences encoded by multiple genes. Based on genomic Southern blots and library cloning statistics there are 150 copies of the 0.7-kilobase-long antifreeze protein gene in the Newfoundland ocean pout, the majority of which are closely linked but irregularly spaced. A more southerly population of ocean pout from New Brunswick in which the circulating antifreeze protein levels are considerably lower has approximately one-quater as many antifreeze protein genes. Thus, there appears to be a correlation between gene dosage and antifreeze protein levels, and hence the ability to survive in ice-laden seawater. Southern blot comparison of the two populations indicates that the differences in gene dosage were not generated by a simple set of deletions/duplications. They are more likely to be the result of differential amplification.


Subject(s)
Dosage Compensation, Genetic , Fishes/genetics , Genetic Variation , Glycoproteins/genetics , Amino Acid Sequence , Animals , Antifreeze Proteins , Base Sequence , Chromatography , Chromatography, High Pressure Liquid , DNA/genetics , Fishes/blood , Freezing , Glycoproteins/blood , Molecular Sequence Data
7.
J Biol Chem ; 260(24): 12904-9, 1985 Oct 25.
Article in English | MEDLINE | ID: mdl-3840475

ABSTRACT

Serum antifreeze polypeptides (AFP) from Newfoundland ocean pout have been resolved by ion exchange chromatography and reverse phase high performance liquid chromatography into at least 12 components. The protein sequences of three of the AFP were determined using a combination of protein Edman degradation and cDNA sequencing. The AFP precursor protein encodes for a preprotein of 87 amino acids with no obvious prosequences. Two of the AFP (SP1-A and SP1-C) were separate gene products with minor amino acid sequence differences. The protein structure of SP1-C precursor is MKSVILTGLLFVLLCVDHMTASQSVVAT QLIPINTALTPAMMEGKVTNPIGIPFAEMSQIVGKQVNTPVAKGQTLMPNMVKTYVAGK. The third AFP (SP1-B) is a post-translation modification product of SP1-C. These experiments indicate that the ocean pout AFP are a multigene family with protein structure different from any other known polypeptide antifreezes.


Subject(s)
Fishes/blood , Glycoproteins/blood , Protein Precursors/blood , Amino Acid Sequence , Animals , Antifreeze Proteins , Base Sequence , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Chymotrypsin/metabolism , DNA/genetics , Glycoproteins/genetics , Molecular Weight , Nucleic Acid Hybridization , Peptide Fragments/metabolism , Protein Processing, Post-Translational , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...