Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 75(6): 796-803, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18394526

ABSTRACT

The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain-computer interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI.


Subject(s)
Brain , Muscular Dystrophy, Duchenne/rehabilitation , Robotics/instrumentation , Self-Help Devices/trends , Spinal Muscular Atrophies of Childhood/rehabilitation , User-Computer Interface , Activities of Daily Living/psychology , Adolescent , Adult , Brain/physiology , Child , Electroencephalography/methods , Evoked Potentials, Motor/physiology , Female , Humans , Learning/physiology , Male , Middle Aged , Motor Skills/physiology , Pilot Projects , Prostheses and Implants/trends , Robotics/methods , Robotics/trends , Software/trends , Volition/physiology
2.
J Neurosci Methods ; 167(1): 31-42, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17706292

ABSTRACT

High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a setup phase (which includes most of the computational burden) and the actual EEG processing phase, which was limited to a single matrix multiplication. This separation allowed to make the procedure suitable for on-line utilization, and a pilot experiment was performed. Results show that lateralization of electrical activity, which is expected to be contralateral to the imagined movement, is more evident on the estimated CCDs than in the scalp potentials. CCDs produce a pattern of relevant spectral features that is more spatially focused, and has a higher statistical significance (EEG: 0.20+/-0.114 S.D.; CCD: 0.55+/-0.16 S.D.; p=10(-5)). A pilot experiment showed that a trained subject could utilize voluntary modulation of estimated CCDs for accurate (eight targets) on-line control of a cursor. This study showed that it is practically feasible to utilize HREEG techniques for on-line operation of a BCI system; off-line analysis suggests that accuracy of BCI control is enhanced by the proposed method.


Subject(s)
Brain Mapping , Brain/physiology , Electroencephalography , Signal Processing, Computer-Assisted , User-Computer Interface , Adult , Biofeedback, Psychology , Communication Aids for Disabled , Electrodes , Evoked Potentials, Motor/physiology , Evoked Potentials, Somatosensory , Female , Humans , Male , Online Systems
3.
Article in English | MEDLINE | ID: mdl-18002510

ABSTRACT

In this pilot study, a system that allows disabled persons to improve or recover their mobility and communication within the surrounding environment was implemented and validated. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Fourteen patients with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program. All users utilized regular assistive control options (e.g., microswitches or head trackers) while four patients learned to operate the system by means of a non-invasive EEG-based Brain-Computer Interface, based on the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp.


Subject(s)
Brain , Communication Aids for Disabled , Self-Help Devices , Software , Computer Systems , Humans , Neurodegenerative Diseases/psychology , Neurodegenerative Diseases/rehabilitation , Quality of Life , User-Computer Interface
4.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 3676-9, 2006.
Article in English | MEDLINE | ID: mdl-17946577

ABSTRACT

We investigated the behaviour of the brain during the visualization of commercial videos by tracking the cortical activity and the functional connectivity changes in normal subjects. High resolution EEG recordings were performed in a group of healthy subjects, and the cortical activity during the visualization of standard commercial spots and emotional spots (no profit companies) was estimated by using the solution of the linear inverse problem with the use of realistic head models. The cortical activity was evaluated in several regions of interest (ROIs) coincident with the Brodmann areas. The pattern of cortical connectivity was obtained by using the partial directed coherence (PDC) and investigated in the time and frequency domains, in the principal four frequency bands, namely the theta (4-7 Hz), the alpha (8-12 Hz), the beta (13-30 Hz) and the gamma (above 30 Hz). Results suggest a time-varying engagement of the orbitofrontal circuits that is thought to be involved in the reward value of the stimuli.


Subject(s)
Brain/physiology , Electroencephalography/methods , Brain Mapping , Cerebral Cortex/physiology , Emotions , Humans , Models, Neurological , Motion Pictures , Sensitivity and Specificity , Video Recording , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...