Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 12(1): 141, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-34138145

ABSTRACT

Lithium-sulfur batteries (LSBs) are considered as the next generation of advanced rechargeable batteries because of their high energy density. In this study, sulfur and CoxS electrocatalyst are deposited on carbon nanotube buckypaper (S/CoxS/BP) by a facile electrodeposition method and are used as a binder-free high-performance cathode for LSBs. Elemental sulfur is deposited on buckypaper by electrooxidation of a polysulfide solution (~ S62-). This approach substantially increased the current and time efficiency of sulfur electrochemical deposition on conductive material for LSBs. S/CoxS/BP cathode could deliver an initial discharge capacity as high as 1650 mAh g-1 at 0.1 C, which is close to the theoretical capacity of sulfur. At current rate of 0.5 C, the S/CoxS/BP has a capacity of 1420 mAh g-1 at the first cycle and 715 mAh g-1 after 500 cycles with a fading rate of 0.099% per cycle. The high capacity of S/CoxS/BP is attributed to both the homogeneous dispersion of nanosized sulfur within BP and the presence of CoxS catalyst. The sodium dodecyl sulfate (SDS) pretreatment of BP renders it polarity to bind polysulfides and thus facilitates the good dispersibility of nanosized sulfur within BP. CoxS catalyst accelerates the kinetics of polysulfide conversion and reduces the presence of polysulfide in the cathode, which suppresses the polysulfide diffusion to anode, i.e., the shuttle effect. The mitigation of the active material loss improves not only the capacity but also the cyclability of S/CoxS/BP.

2.
Anal Chem ; 88(22): 11007-11015, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27748108

ABSTRACT

A flow-through electrode made of a carbon nanotubes (CNT) film deposited on a polytetrafluoroethylene (PTFE) membrane was assembled and employed for the determination of low concentration of copper as a model system by linear sweep anodic stripping voltammetry (LSASV). CNT films with areal mass ranging from 0.12 to 0.72 mg cm-2 were characterized by measurement of sheet resistance, water permeation flux and capacitance. Moreover, CNT with two different sizes and PTFE membrane with two different pore diameters (0.45 and 5.0 µm) were evaluated during the optimization of the electrode. Thick layers made of small CNT exhibited the lowest sheet resistance and the greatest analytical response, whereas thin layers of large CNT had the lowest capacitance and the highest permeation flux. Electrodes made of 0.12 mg cm-2 of large CNT deposited on 5.0 µm PTFE enabled sufficiently high mass transfer and collection efficiency for detecting 64 ppt of Cu(II) within 5 min of deposition and 4.0 mL min-1 flow rate. The analytical response was linear over 4 orders of magnitude (10-9 to 10-5 M) of Cu(II). The excellent performance of the flow-through CNT membrane integrated in a flow cell makes it an appealing approach not only for electroanalysis, but also for the electrochemical treatment of waters, such as the removal of low concentrations of heavy metals and organics.

SELECTION OF CITATIONS
SEARCH DETAIL
...