Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ecology ; 103(9): e3763, 2022 09.
Article in English | MEDLINE | ID: mdl-35612376

ABSTRACT

Despite our growing understanding of the global carbon cycle, scientific consensus on the drivers and mechanisms that control dissolved organic carbon (DOC) turnover in aquatic systems is lacking, hampered by the mismatch between research that approaches DOC reactivity from either intrinsic (inherent chemical properties) or extrinsic (environmental context) perspectives. Here we propose a conceptual view of DOC reactivity in which the combination of intrinsic and extrinsic factors controls turnover rates and determines which reactions will occur. We review three major types of reactions (biological, photochemical, and flocculation) from an intrinsic chemical perspective and further define the environmental features that modulate the expression of chemically inherent reactivity potential. Finally, we propose hypotheses of how extrinsic and intrinsic factors together shape patterns in DOC turnover across the land-to-ocean continuum, underscoring that there is no intrinsic DOC reactivity without environmental context. By acknowledging the intrinsic-extrinsic control duality, our framework intends to foster improved modeling of DOC reactivity and its impact on ecosystem services.


Subject(s)
Dissolved Organic Matter , Ecosystem , Carbon/metabolism , Carbon Cycle
2.
Sci Total Environ ; 819: 153050, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35038529

ABSTRACT

Stream burial, the rerouting of streams into underground culverts, is common in industrialized and densely populated urban areas. While stream burial is common in urban environments, direct characterization of the within-culvert environment is rare and it is unclear if buried reaches reflect neighboring open reaches regarding habitat, biota, and water chemistry. Additionally, for a buried stream, the entrance and exit of the culvert are abrupt habitat transitions within the stream channel, and it is unknown if these transitions lead to similarly abrupt responses in biotic and abiotic characteristics or if responses are gradual. Quantifying the within-culvert environment and transitions upon entering/exiting the culvert has rarely been done but can help inform management practices regarding how these systems are impacted and establish a baseline for evaluating daylighting or stream restoration projects. To understand how culverts affect longitudinal biotic and abiotic characteristics of urban streams, we evaluated longitudinal patterns of physical habitat characteristics, stream water physiochemistry, periphyton biomass, and macroinvertebrate density and diversity in two urban streams that included long (>100 m) culvert reaches. Abrupt transitions in a suite of abiotic and biotic variables were observed at the entrances and exits of the culverts whereas some variables showed no response to the culvert presence. Periphyton biomass and macroinvertebrate density were reduced by 98% and 92%, respectively, by culverts in the two streams. Within the culverts, we observed greater water depths (average of 10 cm outside vs 26 cm within the culvert), finer benthic substrate, and diversity of macroinvertebrates was reduced by 50%. Nutrient concentrations, in contrast, showed no response to the presence of a culvert. Within 60-90 m downstream of the culvert exits, most of the measured parameters returned to levels similar to those observed upstream of the culvert, suggesting that the ecosystem impacts of urban culverts, though dramatic, may be spatially constrained.


Subject(s)
Biodiversity , Ecosystem , Invertebrates , Rivers , Animals , Biomass , Cities , Environmental Monitoring , Groundwater , Invertebrates/physiology
3.
Limnol Oceanogr ; 65(3): 1-23, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32801395

ABSTRACT

Freshwater reservoirs are an important source of the greenhouse gas methane (CH4) to the atmosphere, but global emission estimates are poorly constrained (13.3-52.5 Tg C yr-1), partially due to extreme spatial variability in emission rates within and among reservoirs. Spatial heterogeneity in the availability of organic matter (OM) for biological CH4 production by methanogenic archaea may be an important contributor to this variation. To investigate this, we measured sediment CH4 potential production rates, OM source and quantity, and methanogen community composition at 15 sites within a eutrophic reservoir in Ohio, USA. CH4 production rates were highest in the shallow riverine inlet zone of the reservoir, even when rates were normalized to OM quantity, indicating that OM was more readily utilized by methanogens in the riverine zone than in the transitional or lacustrine zones. Sediment stable isotopes and C:N indicated a greater proportion of terrestrial OM in the particulate sediment of this zone. Methanogens were present at all sites, but the riverine zone contained a higher relative abundance of methanogens capable of acetoclastic and methylotrophic methanogenesis, likely reflecting differences in decomposition processes or OM quality. While we found that methane potential production rates were negatively correlated with autochthonous carbon in particulate sediment OM, rates were positively correlated with indicators of autochthonous carbon in the porewater dissolved OM. It is likely that both dissolved and particulate sediment OM affect CH4 production rates, and that both terrestrial and aquatic OM sources are important in the riverine methane production hot spot.

4.
Glob Chang Biol ; 26(2): 629-641, 2020 02.
Article in English | MEDLINE | ID: mdl-31465582

ABSTRACT

Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2 O). N2 O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2 O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2 O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2 O concentrations of 1.6 ± 2.1 and 1.3 ± 1.8 µg N/L, respectively (mean ± SD) despite higher total N (TN) concentrations in agricultural streams (1,520 ± 1,640 vs. 780 ± 600 µg N/L). Although clear patterns linking N2 O concentrations and environmental variables were difficult to discern, the percent saturation of N2 O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2 O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2 O emissions. An estimate of the N2 O emission from low-order streams at the national scale revealed that ~1.8 × 109  g N2 O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2 O sources in the landscape with 800 × 109  g CO2 -eq emitted annually in Sweden, equivalent to 25% of the total N2 O emissions from the Swedish agricultural sector.


Subject(s)
Forests , Nitrous Oxide , Fertilizers , Soil , Sweden
5.
Environ Monit Assess ; 190(3): 163, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29470719

ABSTRACT

This research investigated the spatiotemporal variation of water quality in the Gilgel Gibe reservoir, Ethiopia, using physicochemical water quality parameters. Nonparametric tests and multivariate statistical techniques were used to evaluate data sets measured during dry and rainy seasons. Electrical conductivity (EC), pH, biochemical oxygen demand (BOD5), total phosphorus (TP), total nitrogen (TN), nitrate (NO3-), total dissolved solids (TDSs), and total suspended solids (TSSs) were all significantly different among seasons (Mann-Whitney U test, p < 0.01). In addition, principal component analysis distinguished dry season samples from wet season samples. The dry season was positively associated with EC, pH, TP, TN, NO3-, TDS, and TSS and negatively associated with BOD5. The wet season was in contrast associated with high values of turbidity, soluble reactive phosphorus (SRP), water temperature, and dissolved oxygen (DO). Within the reservoir, spatial variation was observed for some of the water quality parameters, with significant difference at p = < 0.05. Overall, high nutrient concentrations suggest eutrophic conditions, likely due to high nutrient loading from the watershed. Levels of TSS, attributed to inputs from tributaries, have been excessive enough to inhibit light penetration and thus have a considerable impact on the aquatic food web. Our findings indicate that the reservoir is at high risk of eutrophication and siltation, and hence, urgent action should target the planning and implementation of integrated watershed management for this and similar reservoirs in the region.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Pollution/statistics & numerical data , Biological Oxygen Demand Analysis , Ethiopia , Eutrophication , Nitrogen/analysis , Oxygen/analysis , Phosphorus/analysis , Principal Component Analysis , Seasons , Water Quality
6.
Freshw Sci ; 37(3): 640-652, 2018 09.
Article in English | MEDLINE | ID: mdl-31428513

ABSTRACT

Riparian reforestation is a common restoration action in urban streams, but relatively little is known about the influence of local riparian vegetation in the face of watershed-scale urban land cover. Allochthonous organic matter and benthic algae are important basal energy resources in streams, but the roles of watershed urbanization vs near-stream vegetation in the availability of these resources are not well understood. Our goal was to understand how the interaction of land cover at 2 spatial scales (watershed vs reach) and seasonal dynamics shape basal resources and their effects on macroinvertebrate communities. We assessed relationships between seasonal patterns in standing stocks of particulate organic matter (POM) and benthic periphyton and macroinvertebrate community composition in openand closed-canopy reaches of 4 urban and 4 reference streams in northern Kentucky, USA. POM standing stocks were not strongly influenced by watershed or riparian condition. Benthic algal biomass was greater in urban than in reference streams in all seasons and in open than in closed riparian canopies in summer when light levels are most affected by a deciduous canopy. Relationships between macroinvertebrate functional feeding group (FFG) biomass and their primary food resources were influenced by watershed land use and season, but riparian canopy effects were minor. The proportion of collectors varied by season, whereas the proportion of shredders was higher in reference than urban streams. Scraper biomass was influenced by benthic algal biomass and varied seasonally, whereas predator biomass was driven by prey-insect biomass. Periphyton density was affected by the interaction of watershedand reach-scale land cover and was the only basal resource strongly related to consumer taxa. Watershed land use influences the stream ecosystem, but local riparian canopy may be important in limiting benthic algal accumulation.

7.
Ecosphere ; 9(11)2018 11.
Article in English | MEDLINE | ID: mdl-31297300

ABSTRACT

Many conceptual syntheses in ecology and evolution are undergirded by either a patch- or continuum-based model. Examples include gradualism and punctuated equilibrium in evolution, and edge effects and the theory of island biogeography in ecology. In this study, we sought to determine how patch- or continuum-based analyses could explain variation in concentrations of stream macronutrients and system metabolism, represented by measures of productivity and respiration rates, at the watershed scale across the Kanawha River Basin, USA. Using Strahler stream order (SSO; continuum) and functional process zone (FPZ; patch) as factors, we produced statistical models for each variable and compared model performance using likelihood ratio tests. Only one nutrient (i.e., PO43- ) responded better to patch-based analysis. Both models were significantly better than a null model for ecosystem respiration; however, neither outperformed the other. Importantly, in most cases, a combination model, including both SSO and FPZ, best described observed variation in the system. Our findings suggest that several patch- and continuum-based processes may simultaneously influence the concentration of macronutrients and system metabolism. Nutrient spiral- ing along a continuum and the patch mosaic of land cover may both alter macronutrients, for example. Similarly, increases in temperature and discharge associated with increasing SSO, as well as the differences in light availability and channel morphology associated with different FPZs, may influence system metabolism. For these reasons, we recommend a combination of patch- and continuum-based analyses when modeling, analyzing, and interpreting patterns in stream ecosystem parameters.

8.
Ecosystems ; 20(3): 553-567, 2017 Apr.
Article in English | MEDLINE | ID: mdl-30416371

ABSTRACT

Ecosystem metabolism is an important determinant of trophic structure, nutrient cycling, and other critical ecosystem processes in streams. Whereas watershed- and local-scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at different scales interact to determine stream metabolic rates, particularly in urban streams and across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons. Gross primary production (GPP), ecosystem respiration, and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy, and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams, supported higher rates of GPP than the closed canopy which reaches during the summer and fall, when the overhead vegetation shaded the closed reaches. The effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP <0) and net autotrophy (NEP >0) at the reach-scale during seasons with dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like nighttime hypoxia. Our study suggests that although watershed urbanization fundamentally alters ecosystem function, the preservation and restoration of canopied riparian zones can provide an important management tool at the local scale, with the strongest impacts on stream metabolism during summer.

9.
Ecol Appl ; 26(7): 2130-2144, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755723

ABSTRACT

Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters downstream of green roofs.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Facility Design and Construction , Nitrogen/chemistry , Plants/classification , Environment Design , Ohio , Rain , Water Pollutants, Chemical
10.
Glob Chang Biol ; 19(3): 785-97, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23504836

ABSTRACT

Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land-water-atmosphere interfaces is sometimes mentioned, low-order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2 ) from running waters within a 67 km(2) boreal catchment was studied. During a 4 year period (2006-2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high-resolution (5 × 5 m) grid-based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m(-2)  yr(-1) ) of the entire stream C flux (9.6 (±2.4) g C m(-2)  yr(-1) ) (lateral as DIC, DOC, and vertical as CO2 ). In addition, 72% of the total CO2 loss took place already in the first- and second-order streams. This study demonstrates the importance of including CO2 evasion from low-order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.


Subject(s)
Carbon Dioxide/analysis , Carbon/analysis , Rivers/chemistry , Soil/analysis
11.
Sci Total Environ ; 407(1): 708-22, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18940271

ABSTRACT

Spatial and temporal patterns in streamwater acidity are ecologically important, but difficult to measure in parallel. Here we present the spatial distribution of streamwater chemistry relevant to acidity from 60 stream sites distributed throughout a 67 km2 boreal catchment, sampled during a period of winter baseflow (high pH) and during a spring flood episode (low pH). Sites were grouped based on pH level and pH change from winter baseflow to spring flood. The site attributes of each pH group were then assessed in terms of both stream chemistry and subcatchment landscape characteristics. Winter baseflow pH was high throughout most of the stream network (median pH 6.4), but during the spring flood episode stream sites experienced declines in pH ranging from 0-1.6 pH units, resulting in pH ranging from 4.3-6.3. Spring flood pH was highest in larger, lower altitude catchments underlain by fine sorted sediments, and lowest in small, higher altitude catchments with a mixture of peat wetlands and forested till. Wetland-dominated headwater catchments had low but stable pH, while the spring flood pH drop was largest in a group of catchments of intermediate size which contained well-developed coniferous forest and a moderate proportion of peat wetlands. There was a trend with distance downstream of higher pH, acid neutralizing capacity (ANC) and base cation concentrations together with lower dissolved organic carbon (DOC, strongly negatively correlated with pH). This apparent scale-dependence of stream chemistry could be explained by a number of environmental factors which vary predictably with altitude, catchment area and distance downstream--most notably, a shift in surficial sediment type from unsorted till and peat wetlands to fine sorted sediments at lower altitudes in this catchment. As a result of the combination of spatial heterogeneity in landscape characteristics and scale-related processes, boreal catchments like this one can be expected to experience high spatial variability both in terms of chemistry at any given point in time, and in the change experienced during high discharge episodes. Although chemistry patterns showed associations with landscape characteristics, considerable additional variability remained, suggesting that the modeling of dynamic stream chemistry from map parameters will continue to present a challenge.


Subject(s)
Anions/analysis , Cold Climate , Environmental Monitoring , Fresh Water , Seasons , Cations/analysis , Fresh Water/analysis , Fresh Water/chemistry , Hydrogen-Ion Concentration , Sweden , Water Movements
12.
Environ Sci Technol ; 40(11): 3494-500, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16786685

ABSTRACT

Inorganic aluminum (Al) concentrations are critical for defining the biological effects of acidification. The landscape's role in controlling the spatial variability of Al and its speciation has received only limited attention. We analyzed the speciation of stream Al at 14 sites within a 68 km2 boreal catchment during spring snowmelt, a period of episodic acidity. Three factors that influenced Al at these sites were landscape type (specifically the proportion of wetland areas), stream pH, and dissolved organic carbon (DOC). Forested catchment sites underlain by mineral soils had higher total Al concentrations and greater inorganic Al proportions than catchments with larger wetland areas, despite significantly higher pH. We suggest that this difference results from source limitation of Al in the peat wetlands. The control of Al solubilitywas dominated by organic complexes, with the organic carrying capacity exceeding Al in the majority of samples. When assessing the inorganic phase, only four percent of the samples were oversaturated with regards to commonly forming secondary Al minerals, with no samples showing supersaturation higher than 10 times with respect to any given solid phase. Inorganic Al rarely exceeded biological thresholds, except for short periods during peak flow in forested areas, despite two-thirds of the streams having minimum pH values below 4.9. Streams with a high percentage of wetland area were associated with lower Al:DOC ratios. The Al:DOC ratios were quite stable in each stream before, during, and after snowmelt, with the exception of isolated spikes in the Al:DOC ratio associated with particulate Al at a downstream site during high flow.


Subject(s)
Aluminum/analysis , Disasters , Environmental Monitoring/methods , Rivers/chemistry , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/instrumentation , Geography , Hydrogen-Ion Concentration , Organic Chemicals/chemistry , Water Movements , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...