Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 655: 1113-1124, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30577105

ABSTRACT

The use of hyperspectral spectroscopy for oil detection recently sparked a growing interest for risk assessment over vegetated areas. In a perspective of image applications, we conducted a greenhouse experiment on a brownfield-established species, Rubus fruticosus L. (bramble), to evaluate the potential of vegetation reflectance to detect and discriminate among various oil-contaminated soils. The species was grown for 32 days on four different soils with mixtures of petroleum hydrocarbons and heavy metals. Additional plants were grown on either uncontaminated control or water-deficient soils for comparison. Repeated reflectance measurements indicated modified spectral signatures under both oil and water-deficit exposure, from leaf to multi-plant scales. The amplitude of the response varied with mixture composition, exposure time, acquisition scale and spectrum region. Reflectance changes were linked to alterations in chlorophyll, carotenoid and water contents using vegetation indices. These indices were used to catch spectral similarities among acquisition scales and to discriminate among treatments using Kendall's coefficient of concordance (W) and regularized logistic regression. Of the 33 vegetation indices tested, 14 were concordant from leaf to multi-plant scales (W > 0.75, p < 0.05) and strongly related to leaf biochemistry (R2 > 0.7). The 14 indices allowed discriminating between each mixture and the control treatment with no or minor confusions (≤5%) at all acquisition scales, depending on exposure time. Some of the mixtures remained difficult to discriminate among them and from the water-deficit treatment. The approach was tested at the canopy scale under natural conditions and performed well for identifying bramble exposed to either one of the experimentally-tested mixtures (90% accuracy) or to uncontaminated soil (83% accuracy). This study provided better understanding of vegetation spectral response to oil mixtures and opens up promising perspectives for future applications.


Subject(s)
Environmental Monitoring/methods , Petroleum Pollution/analysis , Soil Pollutants/analysis , Soil/chemistry , Droughts , Environmental Monitoring/instrumentation , France
2.
Environ Pollut ; 222: 393-403, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28089211

ABSTRACT

Worldwide seagrass declines have been observed due to multiple stressors. One of them is the mixture of pesticides used in intensive agriculture and boat antifouling paints in coastal areas. Effects of mixture toxicity are complex and poorly understood. However, consideration of mixture toxicity is more realistic and ecologically relevant for environmental risk assessment (ERA). The first aim of this study was to determine short-term effects of realistic herbicide mixture exposure on physiological endpoints of Zostera noltei. The second aim was to assess the environmental risks of this mixture, by comparing the results to previously published data. Z. noltei was exposed to a mixture of four herbicides: atrazine, diuron, irgarol and S-metolachlor, simulating the composition of typical cocktail of contaminants in the Arcachon bay (Atlantic coast, France). Three stress biomarkers were measured: enzymatic activity of glutathione reductase, effective quantum yield (EQY) and photosynthetic pigment composition after 6, 24 and 96 h. Short term exposure to realistic herbicide mixtures affected EQY, with almost 100% inhibition for the two highest concentrations, and photosynthetic pigments. Effect on pigment composition was detected after 6 h with a no observed effect concentration (NOEC) of 1 µg/L total mixture concentration. The lowest EQY effect concentration at 10% (EC10) (2 µg/L) and pigment composition NOEC with an assessment factor of 10 were above the maximal field concentrations along the French Atlantic coast, suggesting that there are no potential short term adverse effects of this particular mixture on Z. noltei. However, chronic effects on photosynthesis may lead to reduced energy reserves, which could thus lead to effects at whole plant and population level. Understanding the consequences of chemical mixtures could help to improve ERA and enhance management strategies to prevent further declines of seagrass meadows worldwide.


Subject(s)
Herbicides/toxicity , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Zosteraceae/drug effects , Bays , France , Glutathione Reductase/metabolism , Insecticides/toxicity , Zosteraceae/enzymology , Zosteraceae/metabolism
3.
PLoS One ; 8(9): e75352, 2013.
Article in English | MEDLINE | ID: mdl-24073263

ABSTRACT

In situ pigment contents of biofilm-dwelling bdelloid rotifers of the Garonne River (France) were measured by high performance liquid chromatography (HPLC) and compared with pigment composition of surrounding biofilm microphytobenthic communities. Among pigments that were detected in rotifers, the presence of carotenoids fucoxanthin and myxoxanthophyll showed that the rotifers fed on diatoms and cyanobacteria. Unexpectedly, while diatoms strongly dominated microphytobenthic communities in terms of biomass, HPLC results hinted that rotifers selectively ingested benthic filamentous cyanobacteria. In doing so, rotifers could daily remove a substantial fraction (up to 28%) of this cyanobacterial biomass. The possibility that the rotifers hosted symbiotic myxoxanthophyll-containing cyanobacteria was examined by localisation of chlorophyll fluorescence within rotifers using confocal laser scanning microscopy (CLSM). CLSM results showed an even distribution of quasi-circular fluorescent objects (FO) throughout rotifer bodies, whereas myxoxanthophyll is a biomarker pigment of filamentous cyanobacteria, so the hypothesis was rejected. Our results also suggest that rotifers converted ß-carotene (provided by ingested algae) into echinenone, a photoprotective pigment. This study, which is the first one to detail in situ pigment contents of rotifers, clearly shows that the role of cyanobacteria as a food source for meiobenthic invertebrates has been underestimated so far, and deserves urgent consideration.


Subject(s)
Animal Feed , Biofilms/growth & development , Cyanobacteria/physiology , Diatoms/physiology , Pigments, Biological/analysis , Rotifera/microbiology , Animals , Bacteriochlorophylls/metabolism , Chromatography, High Pressure Liquid , France , Rotifera/growth & development , Rotifera/metabolism , beta Carotene/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...