Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 45(46): 13827-34, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17105201

ABSTRACT

Phospholamban (PLN), a single-pass membrane protein, regulates heart muscle contraction and relaxation by reversible inhibition of the sarco(endo)plasmic reticulum Ca-ATPase (SERCA). Studies in detergent micelles and oriented lipid bilayers have shown that in its monomeric form PLN adopts a dynamic L shape (bent or T state) that is in conformational equilibrium with a more dynamic R state. In this paper, we use solid-state NMR on both uniformly and selectively labeled PLN to refine our initial studies, describing the topology and dynamics of PLN in oriented lipid bilayers. Two-dimensional PISEMA (polarization inversion spin exchange at the magic angle) experiments carried out in DOPC/DOPE mixed lipid bilayers reveal a tilt angle of the transmembrane domain with respect to the static magnetic field, of 21 +/- 2 degrees and, at the same time, map the rotation angle of the transmembrane domain with respect to the bilayer. PISEMA spectra obtained with selectively labeled samples show that the cytoplasmic domain of PLN is helical and makes an angle of 93 +/- 6 degrees with respect to the bilayer normal. In addition, using samples tilted by 90 degrees , we find that the transmembrane domain of PLN undergoes fast long-axial rotational diffusion about the bilayer normal with the cytoplasmic domain undergoing this motion and other complex dynamics, scaling the values of chemical shift anisotropy. While this dynamic was anticipated by previous solution NMR relaxation studies in micelles, these measurements in the anisotropic lipid environment reveal new dynamic and conformational features encoded in the free protein that might be crucial for SERCA recognition and subsequent inhibition.


Subject(s)
Calcium-Binding Proteins/chemistry , Lipid Bilayers , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
2.
Biochemistry ; 45(27): 8341-9, 2006 Jul 11.
Article in English | MEDLINE | ID: mdl-16819833

ABSTRACT

The intermolecular packing of a beta-hairpin antimicrobial peptide, PG-1, in lipid bilayers is determined using solid-state NMR distance measurements. Previous spin counting experiments showed that PG-1 associates as dimers in POPC bilayers; however, the detailed dimer structure was unknown. We have now measured several intermolecular 13C-19F, 1H-13C, and 15N-13C distances in site-specifically labeled PG-1 to constrain the structure of the intermolecular interface. The distances are measured using the rotational-echo double-resonance (REDOR) technique under magic-angle spinning. The results indicate that two PG-1 molecules align in a parallel fashion with the C-terminal strand of the hairpin forming the dimer interface. Six hydrogen bonds stabilize this interface, and the Phe12 side chain adopts the g- conformation in the membrane as in solution. The parallel packing of the peptide in the lipid bilayer differs from the antiparallel dimer found in DPC micelles and may be stabilized by its strong amphipathic character, which should facilitate its insertion into the amphipathic lipid bilayer. This study demonstrates the utility of the REDOR NMR technique for the elucidation of the oligomeric structure of membrane proteins.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Membrane Proteins/chemistry , Proteins/chemistry , Dimerization , Hydrogen Bonding , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Phosphatidylcholines/chemistry , Protein Structure, Secondary
3.
J Phys Chem B ; 109(46): 22036-44, 2005 Nov 24.
Article in English | MEDLINE | ID: mdl-16853861

ABSTRACT

The influence of an antimicrobial peptide, protegrin-1 (PG-1), on the curvature and lateral diffusion coefficient (D(L)) of phosphocholine bilayers is investigated using one- (1D) and two-dimensional (2D) (31)P exchange NMR. The experiments utilize the fact that lipid lateral diffusion over the curved surface of vesicles changes the molecular orientation and thus the (31)P chemical shift anisotropy. This reorientation is manifested in 2D spectra as off-diagonal intensities and in 1D stimulated-echo experiments as reduced echo heights. The 2D spectra give information on the reorientation-angle distribution while the decay of the stimulated-echo intensity, which closely tracks the second-order correlation function in our experiments, yields the correlation times of the reorientation. The relationships among the 2D exchange spectra, stimulated-echo intensities, the correlation function, and reorientation-angle distributions are analyzed in detail. In the absence of PG-1, both dilaurylphosphotidylcholine (DLPC) and palmitoyloleoylphosphatidylcholine (POPC) vesicles show biexponential decays of the stimulated-echo intensities to equilibrium values of 0.20-0.25, suggesting that the curvature of the lipid vesicles has a bimodal distribution. The addition of PG-1 to DLPC vesicles increased the decay time constants, indicating that D(L) decreases due to peptide binding. In contrast, the addition of PG-1 to POPC vesicles decreased the decay constants by three to fivefold, indicating that the POPC vesicles are fragmented into smaller vesicles. On the basis of the changes in D(L) and the decay constants, we estimate that the radius of the POPC vesicles decreases by threefold due to PG-1 binding. Simulations of the 2D exchange spectra yielded quantitative reorientation-angle distributions that are consistent with the bimodal distributions of the vesicle curvature and the effects of the peptide on the two types of lipid bilayers. Thus, (31)P exchange NMR provides useful insights into the membrane morphological changes induced by this antimicrobial peptide.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Magnetic Resonance Spectroscopy/methods , Membranes, Artificial , Phosphatidylcholines/chemistry , Proteins/chemistry , Phosphorus Isotopes , Sensitivity and Specificity , Time Factors
4.
J Am Chem Soc ; 123(5): 978-9, 2001 Feb 07.
Article in English | MEDLINE | ID: mdl-11456634
SELECTION OF CITATIONS
SEARCH DETAIL
...