Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Adv Exp Med Biol ; 3234: 173-190, 2024.
Article in English | MEDLINE | ID: mdl-38507207

ABSTRACT

High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.


Subject(s)
Electrons , Membrane Proteins , Cryoelectron Microscopy/methods , Freezing , Specimen Handling/methods , Macromolecular Substances
2.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38296633

ABSTRACT

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Subject(s)
BTB-POZ Domain , Craniofacial Abnormalities , Face , Humans , Abnormalities, Multiple , Co-Repressor Proteins/genetics , Craniofacial Abnormalities/genetics , Ectodermal Dysplasia , Face/abnormalities , Mutation, Missense/genetics , Syndrome
3.
Structure ; 32(3): 342-351.e6, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38198950

ABSTRACT

Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.


Subject(s)
Protein Engineering , Binding Sites
4.
Antib Ther ; 6(4): 277-297, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38075238

ABSTRACT

Background: Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods: Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion: Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.

5.
Nucleic Acids Res ; 50(10): 5934-5947, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35640974

ABSTRACT

UPF3 is a key nonsense-mediated mRNA decay (NMD) factor required for mRNA surveillance and eukaryotic gene expression regulation. UPF3 exists as two paralogs (A and B) which are differentially expressed depending on cell type and developmental stage and believed to regulate NMD activity based on cellular requirements. UPF3B mutations cause intellectual disability. The underlying molecular mechanisms remain elusive, as many of the mutations lie in the poorly characterized middle-domain of UPF3B. Here, we show that UPF3A and UPF3B share structural and functional homology to paraspeckle proteins comprising an RNA-recognition motif-like domain (RRM-L), a NONA/paraspeckle-like domain (NOPS-L), and extended α-helical domain. These domains are essential for RNA/ribosome-binding, RNA-induced oligomerization and UPF2 interaction. Structures of UPF2's third middle-domain of eukaryotic initiation factor 4G (MIF4GIII) in complex with either UPF3B or UPF3A reveal unexpectedly intimate binding interfaces. UPF3B's disease-causing mutation Y160D in the NOPS-L domain displaces Y160 from a hydrophobic cleft in UPF2 reducing the binding affinity ∼40-fold compared to wildtype. UPF3A, which is upregulated in patients with the UPF3B-Y160D mutation, binds UPF2 with ∼10-fold higher affinity than UPF3B reliant mainly on NOPS-L residues. Our characterization of RNA- and UPF2-binding by UPF3's middle-domain elucidates its essential role in NMD.


Subject(s)
Intellectual Disability , Nonsense Mediated mRNA Decay , Binding, Competitive , Humans , Intellectual Disability/genetics , Mutation , Nonsense Mediated mRNA Decay/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
J Med Chem ; 64(18): 13451-13474, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34506142

ABSTRACT

Discoidin domain receptors 1 and 2 (DDR1/2) play a central role in fibrotic disorders, such as renal and pulmonary fibrosis, atherosclerosis, and various forms of cancer. Potent and selective inhibitors, so-called chemical probe compounds, have been developed to study DDR1/2 kinase signaling. However, these inhibitors showed undesired activity on other kinases such as the tyrosine protein kinase receptor TIE or tropomyosin receptor kinases, which are related to angiogenesis and neuronal toxicity. In this study, we optimized our recently published p38 mitogen-activated protein kinase inhibitor 7 toward a potent and cell-active dual DDR/p38 chemical probe and developed a structurally related negative control. The structure-guided design approach used provided insights into the P-loop folding process of p38 and how targeting of non-conserved amino acids modulates inhibitor selectivity. The developed and comprehensively characterized DDR/p38 probe, 30 (SR-302), is a valuable tool for studying the role of DDR kinase in normal physiology and in disease development.


Subject(s)
Benzamides/pharmacology , Discoidin Domain Receptor 1/metabolism , Discoidin Domain Receptor 2/metabolism , Sulfonamides/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Allosteric Site , Animals , Benzamides/chemical synthesis , Benzamides/metabolism , Cell Line, Tumor , Discoidin Domain Receptor 1/chemistry , Discoidin Domain Receptor 2/chemistry , Dogs , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Microsomes, Liver/metabolism , Protein Binding , Sulfonamides/chemical synthesis , Sulfonamides/metabolism , p38 Mitogen-Activated Protein Kinases/chemistry
7.
Nucleic Acids Res ; 49(13): 7665-7679, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34157102

ABSTRACT

Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3'CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1's accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.


Subject(s)
Peptide Chain Elongation, Translational/drug effects , Peptide Chain Termination, Translational/drug effects , Protein Synthesis Inhibitors/pharmacology , Cryoelectron Microscopy , HeLa Cells , Humans , Nonsense Mediated mRNA Decay/drug effects , Nucleosides/chemistry , Nucleosides/pharmacology , Peptide Termination Factors/metabolism , Peptides/metabolism , Protein Synthesis Inhibitors/chemistry , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/drug effects , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/metabolism
8.
Eur J Med Chem ; 200: 112417, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32505849

ABSTRACT

Receptor-interacting protein kinase 2 (RIPK2) is a key mediator of nucleotide-binding oligomerization domain (NOD) cell signaling that has been implicated in various chronic inflammatory conditions. A new class of RIPK2 kinase/NOD signaling inhibitors based on a 3,5-diphenyl-2-aminopyridine scaffold was developed. Several co-crystal structures of RIPK2•inhibitor complexes were analyzed to provide insights into inhibitor selectivity versus the structurally related activin receptor-like kinase 2 (ALK2) demonstrating that the inhibitor sits deeper in the hydrophobic binding pocket of RIPK2 perturbing the orientation of the DFG motif. In addition, the structure-activity relationship study revealed that in addition to anchoring to the hinge and DFG via the 2-aminopyridine and 3-phenylsulfonamide, respectively, appropriate occupancy of the region between the gatekeeper and the αC-helix provided by substituents in the 4- and 5-positions of the 3-phenylsulfonamide were necessary to achieve potent NOD cell signaling inhibition. For example, compound 18t (e.g. CSLP37) displayed potent biochemical RIPK2 kinase inhibition (IC50 = 16 ± 5 nM), >20-fold selectivity versus ALK2 and potent NOD cell signaling inhibition (IC50 = 26 ± 4 nM) in the HEKBlue assay. Finally, in vitro ADME and pharmacokinetic characterization of 18t further supports the prospects of the 3,5-diphenyl-2-aminopyridine scaffold for the generation of in vivo pharmacology probes of RIPK2 kinase and NOD cell signaling functions.


Subject(s)
Aminopyridines/chemistry , Nod Signaling Adaptor Proteins/chemistry , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Signal Transduction/drug effects , Binding Sites , Crystallography, X-Ray , Humans , Inflammation , Structure-Activity Relationship
9.
Sci Adv ; 5(9): eaaw2853, 2019 09.
Article in English | MEDLINE | ID: mdl-31620562

ABSTRACT

Self-assembling virus-like particles represent highly attractive tools for developing next-generation vaccines and protein therapeutics. We created ADDomer, an adenovirus-derived multimeric protein-based self-assembling nanoparticle scaffold engineered to facilitate plug-and-play display of multiple immunogenic epitopes from pathogens. We used cryo-electron microscopy at near-atomic resolution and implemented novel, cost-effective, high-performance cloud computing to reveal architectural features in unprecedented detail. We analyzed ADDomer interaction with components of the immune system and developed a promising first-in-kind ADDomer-based vaccine candidate to combat emerging Chikungunya infectious disease, exemplifying the potential of our approach.


Subject(s)
Adenoviridae , Epitope Mapping/methods , Epitopes/immunology , Vaccines, Synthetic/immunology , Viral Proteins/immunology , Adenoviridae/classification , Adenoviridae/genetics , Adenoviridae/immunology , Communicable Disease Control , Communicable Diseases/etiology , Communicable Diseases/immunology , Epitopes/chemistry , Epitopes/genetics , Genetic Engineering , Humans , Models, Molecular , Nanomedicine , Nanotechnology , Protein Conformation , Structure-Activity Relationship , Vaccination , Vaccinology/methods , Viral Proteins/chemical synthesis , Viral Proteins/chemistry , Viral Proteins/genetics
11.
EMBO J ; 37(17)2018 09 03.
Article in English | MEDLINE | ID: mdl-30026309

ABSTRACT

RIPK2 mediates inflammatory signaling by the bacteria-sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD-mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP-binding and XIAP-mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between ß2 and ß3 of the N-lobe of the kinase, which is in close proximity to the ATP-binding pocket. Through characterization of a new series of ATP pocket-binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2-XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP-binding pocket in RIPK2 can be exploited to interfere with the RIPK2-XIAP interaction for modulation of NOD signaling.


Subject(s)
Nod2 Signaling Adaptor Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Female , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mice , Nod2 Signaling Adaptor Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism
12.
Sci Signal ; 11(531)2018 05 22.
Article in English | MEDLINE | ID: mdl-29789297

ABSTRACT

Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain.


Subject(s)
Casein Kinase I/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Neoplasm Proteins/chemistry , Protein Domains , Casein Kinase I/chemistry , Casein Kinase I/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Isoforms , Signal Transduction
13.
Biochem Soc Trans ; 46(3): 503-512, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29626148

ABSTRACT

Faulty mRNAs with a premature stop codon (PTC) are recognized and degraded by nonsense-mediated mRNA decay (NMD). Recognition of a nonsense mRNA depends on translation and on the presence of NMD-enhancing or the absence of NMD-inhibiting factors in the 3'-untranslated region. Our review summarizes our current understanding of the molecular function of the conserved NMD factors UPF3B and UPF1, and of the anti-NMD factor Poly(A)-binding protein, and their interactions with ribosomes translating PTC-containing mRNAs. Our recent discovery that UPF3B interferes with human translation termination and enhances ribosome dissociation in vitro, whereas UPF1 is inactive in these assays, suggests a re-interpretation of previous experiments and modification of prevalent NMD models. Moreover, we discuss recent work suggesting new functions of the key NMD factor UPF1 in ribosome recycling, inhibition of translation re-initiation and nascent chain ubiquitylation. These new findings suggest that the interplay of UPF proteins with the translation machinery is more intricate than previously appreciated, and that this interplay quality-controls the efficiency of termination, ribosome recycling and translation re-initiation.


Subject(s)
Nonsense Mediated mRNA Decay , Protein Biosynthesis , 3' Untranslated Regions , Codon, Nonsense , Exons , Humans , RNA Helicases/metabolism , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Trans-Activators/metabolism
14.
Bioorg Med Chem Lett ; 28(4): 577-583, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29409752

ABSTRACT

Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity.


Subject(s)
Phenylurea Compounds/metabolism , Protein Kinase Inhibitors/metabolism , Pyridines/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Humans , Molecular Docking Simulation , Phenylurea Compounds/chemical synthesis , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry
15.
Biochem J ; 474(22): 3747-3761, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28963344

ABSTRACT

Members of the potassium channel tetramerization domain (KCTD) family are soluble non-channel proteins that commonly function as Cullin3 (Cul3)-dependent E3 ligases. Solution studies of the N-terminal BTB domain have suggested that some KCTD family members may tetramerize similarly to the homologous tetramerization domain (T1) of the voltage-gated potassium (Kv) channels. However, available structures of KCTD1, KCTD5 and KCTD9 have demonstrated instead pentameric assemblies. To explore other phylogenetic clades within the KCTD family, we determined the crystal structures of the BTB domains of a further five human KCTD proteins revealing a rich variety of oligomerization architectures, including monomer (SHKBP1), a novel two-fold symmetric tetramer (KCTD10 and KCTD13), open pentamer (KCTD16) and closed pentamer (KCTD17). While these diverse geometries were confirmed by small-angle X-ray scattering (SAXS), only the pentameric forms were stable upon size-exclusion chromatography. With the exception of KCTD16, all proteins bound to Cul3 and were observed to reassemble in solution as 5 : 5 heterodecamers. SAXS data and structural modelling indicate that Cul3 may stabilize closed BTB pentamers by binding across their BTB-BTB interfaces. These extra interactions likely also allow KCTD proteins to bind Cul3 without the expected 3-box motif. Overall, these studies reveal the KCTD family BTB domain to be a highly versatile scaffold compatible with a range of oligomeric assemblies and geometries. This observed interface plasticity may support functional changes in regulation of this unusual E3 ligase family.


Subject(s)
Cullin Proteins/chemistry , Cullin Proteins/metabolism , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Crystallography, X-Ray/methods , Cullin Proteins/genetics , Humans , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Potassium Channels, Voltage-Gated/genetics , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , Ubiquitin-Protein Ligases/genetics
16.
Nucleic Acids Res ; 45(8): 4655-4666, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28334892

ABSTRACT

Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.


Subject(s)
Citric Acid/chemistry , Escherichia coli/enzymology , Polyribonucleotide Nucleotidyltransferase/chemistry , RNA/chemistry , Streptomyces antibioticus/enzymology , Sulfolobus solfataricus/enzymology , Amino Acid Sequence , Binding Sites , Biological Evolution , Citric Acid/metabolism , Cloning, Molecular , Computational Biology , Conserved Sequence , Escherichia coli/genetics , Exosomes/chemistry , Exosomes/enzymology , Gene Expression , Humans , Kinetics , Mitochondria/chemistry , Mitochondria/enzymology , Molecular Docking Simulation , Polyribonucleotide Nucleotidyltransferase/genetics , Polyribonucleotide Nucleotidyltransferase/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , RNA/metabolism , RNA Stability/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Streptomyces antibioticus/genetics , Structural Homology, Protein , Substrate Specificity , Sulfolobus solfataricus/genetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...