Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(45): e2305200, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37587765

ABSTRACT

MXenes are a rapidly growing family of 2D transition metal carbides and nitrides that are promising for various applications, including energy storage and conversion, electronics, and healthcare. Hydrofluoric-acid-based etchants are typically used for large-scale and high-throughput synthesis of MXenes, which also leads to a mixture of surface terminations that impede MXene properties. Herein, a computational thermodynamic model with experimental validation is presented to explore the feasibility of fluorine-free synthesis of MXenes with uniform surface terminations by dry selective extraction (DSE) from precursor MAX phases using iodine vapors. A range of MXenes and respective precursor compositions are systematically screened using first-principles calculations to find candidates with high phase stability and low etching energy. A thermodynamic model based on the "CALculation of PHAse Diagrams" (CALPHAD) approach is further demonstrated, using Ti3 C2 I2 as an example, to assess the Gibbs free energy of the DSE reaction and the state of the byproducts as a function of temperature and pressure. Based on the assessment, the optimal synthesis temperature and vapor pressure are predicted and further verified by experiments. This work opens an avenue for scalable, fluorine-free dry synthesis of MXenes with compositions and surface chemistries that are not accessible using wet chemical etching.

2.
ACS Nano ; 17(17): 16912-16922, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37638732

ABSTRACT

The alkaline earth stannates are touted for their wide band gaps and the highest room-temperature electron mobilities among all of the perovskite oxides. CaSnO3 has the highest measured band gap in this family and is thus a particularly promising ultrawide band gap semiconductor. However, discouraging results from previous theoretical studies and failed doping attempts had described this material as "undopable". Here we redeem CaSnO3 using hybrid molecular beam epitaxy, which provides an adsorption-controlled growth for the phase-pure, epitaxial, and stoichiometric CaSnO3 films. By introducing lanthanum (La) as an n-type dopant, we demonstrate the robust and predictable doping of CaSnO3 with free electron concentrations, n3D, from 3.3 × 1019 cm-3 to 1.6 × 1020 cm-3. The films exhibit a maximum room-temperature mobility of 42 cm2 V-1 s-1 at n3D = 3.3 × 1019 cm-3. Despite having a comparable radius as the host ion, La expands the lattice parameter. Using density functional calculations, this effect is attributed to the energy gain by lowering the conduction band upon volume expansion. Finally, we exploit robust doping by fabricating CaSnO3-based field-effect transistors. The transistors show promise for CaSnO3's high-voltage capabilities by exhibiting low off-state leakage below 2 × 10-5 mA/mm at a drain-source voltage of 100 V and on-off ratios exceeding 106. This work serves as a starting point for future studies on the semiconducting properties of CaSnO3 and many devices that could benefit from CaSnO3's exceptionally wide band gap.

3.
ACS Appl Mater Interfaces ; 13(38): 45679-45685, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34523338

ABSTRACT

We present a detailed analysis of the temperature dependence of the thermal conductivity of a ferroelectric PbTiO3 thin film deposited in a composition-spread geometry enabling a continuous range of compositions from ∼25% titanium deficient to ∼20% titanium rich to be studied. By fitting the experimental results to the Debye model we deconvolute and quantify the two main phonon-scattering sources in the system: ferroelectric domain walls (DWs) and point defects. Our results prove that ferroelectric DWs are the main agent limiting the thermal conductivity in this system, not only in the stoichiometric region of the thin film ([Pb]/[Ti] ≈ 1) but also when the concentration of the cation point defects is significant (up to ∼15%). Hence, DWs in ferroelectric materials are a source of phonon scattering at least as effective as point defects. Our results demonstrate the viability and effectiveness of using reconfigurable DWs to control the thermal conductivity in solid-state devices.

4.
Nano Lett ; 19(11): 7901-7907, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31596599

ABSTRACT

Achieving efficient spatial modulation of phonon transmission is an essential step on the path to phononic circuits using "phonon currents". With their intrinsic and reconfigurable interfaces, domain walls (DWs), ferroelectrics are alluring candidates to be harnessed as dynamic heat modulators. This paper reports the thermal conductivity of single-crystal PbTiO3 thin films over a wide variety of epitaxial-strain-engineered ferroelectric domain configurations. The phonon transport is proved to be strongly affected by the density and type of DWs, achieving a 61% reduction of the room-temperature thermal conductivity compared to the single-domain scenario. The thermal resistance across the ferroelectric DWs is obtained, revealing a very high value (≈5.0 × 10-9 K m2 W-1), comparable to grain boundaries in oxides, explaining the strong modulation of the thermal conductivity in PbTiO3. This low thermal conductance of the DWs is ascribed to the structural mismatch and polarization gradient found between the different types of domains in the PbTiO3 films, resulting in a structural inhomogeneity that extends several unit cells around the DWs. These findings demonstrate the potential of ferroelectric DWs as efficient regulators of heat flow in one single material, overcoming the complexity of multilayers systems and the uncontrolled distribution of grain boundaries, paving the way for applications in phononics.

SELECTION OF CITATIONS
SEARCH DETAIL
...