Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
J Am Soc Nephrol ; 35(1): 7-21, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37990364

ABSTRACT

SIGNIFICANCE STATEMENT: In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND: Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS: We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS: An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and ß2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS: Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.


Subject(s)
Acidosis, Renal Tubular , Alkalosis , Kidney Tubules, Collecting , Vacuolar Proton-Translocating ATPases , Humans , Male , Mice , Animals , Acidosis, Renal Tubular/genetics , Furosemide/pharmacology , Aquaporin 2/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Kidney/metabolism , Alkalosis/metabolism , Sulfate Transporters/metabolism , Protein Isoforms , Alkalies , Kidney Tubules, Collecting/metabolism
3.
Nat Commun ; 14(1): 3236, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270534

ABSTRACT

Excessive TGF-ß signaling and mitochondrial dysfunction fuel chronic kidney disease (CKD) progression. However, inhibiting TGF-ß failed to impede CKD in humans. The proximal tubule (PT), the most vulnerable renal segment, is packed with giant mitochondria and injured PT is pivotal in CKD progression. How TGF-ß signaling affects PT mitochondria in CKD remained unknown. Here, we combine spatial transcriptomics and bulk RNAseq with biochemical analyses to depict the role of TGF-ß signaling on PT mitochondrial homeostasis and tubulo-interstitial interactions in CKD. Male mice carrying specific deletion of Tgfbr2 in the PT have increased mitochondrial injury and exacerbated Th1 immune response in the aristolochic acid model of CKD, partly, through impaired complex I expression and mitochondrial quality control associated with a metabolic rewiring toward aerobic glycolysis in the PT cells. Injured S3T2 PT cells are identified as the main mediators of the maladaptive macrophage/dendritic cell activation in the absence of Tgfbr2. snRNAseq database analyses confirm decreased TGF-ß receptors and a metabolic deregulation in the PT of CKD patients. This study describes the role of TGF-ß signaling in PT mitochondrial homeostasis and inflammation in CKD, suggesting potential therapeutic targets that might be used to mitigate CKD progression.


Subject(s)
Renal Insufficiency, Chronic , Signal Transduction , Humans , Male , Mice , Animals , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Signal Transduction/physiology , Renal Insufficiency, Chronic/complications , Kidney/metabolism , Transforming Growth Factor beta/metabolism , Mitochondria/metabolism , Inflammation/metabolism , Fibrosis
4.
Function (Oxf) ; 4(1): zqac065, 2023.
Article in English | MEDLINE | ID: mdl-36654930

ABSTRACT

Nephrotoxicity is a major cause of kidney disease and failure in drug development, but understanding of cellular mechanisms is limited, highlighting the need for better experimental models and methodological approaches. Most nephrotoxins damage the proximal tubule (PT), causing functional impairment of solute reabsorption and systemic metabolic complications. The antiviral drug tenofovir disoproxil fumarate (TDF) is an archetypal nephrotoxin, inducing mitochondrial abnormalities and urinary solute wasting, for reasons that were previously unclear. Here, we developed an automated, high-throughput imaging pipeline to screen the effects of TDF on solute transport and mitochondrial morphology in human-derived RPTEC/TERT1 cells, and leveraged this to generate realistic models of functional toxicity. By applying multiparametric metabolic profiling-including oxygen consumption measurements, metabolomics, and transcriptomics-we elucidated a highly robust molecular fingerprint of TDF exposure. Crucially, we identified that the active metabolite inhibits complex V (ATP synthase), and that TDF treatment causes rapid, dose-dependent loss of complex V activity and expression. Moreover, we found evidence of complex V suppression in kidney biopsies from humans with TDF toxicity. Thus, we demonstrate an effective and convenient experimental approach to screen for disease relevant functional defects in kidney cells in vitro, and reveal a new paradigm for understanding the pathogenesis of a substantial cause of nephrotoxicity.


Subject(s)
Antiviral Agents , Renal Insufficiency , Humans , Tenofovir/adverse effects , Antiviral Agents/metabolism , Kidney , Mitochondria , Renal Insufficiency/drug therapy , Metabolomics
5.
Nat Commun ; 13(1): 5732, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175561

ABSTRACT

The kidney regulates plasma protein levels by eliminating them from the circulation. Proteins filtered by glomeruli are endocytosed and degraded in the proximal tubule and defects in this process result in tubular proteinuria, an important clinical biomarker. However, the spatiotemporal organization of renal protein metabolism in vivo was previously unclear. Here, using functional probes and intravital microscopy, we track the fate of filtered proteins in real time in living mice, and map specialized processing to tubular structures with singular value decomposition analysis and three-dimensional electron microscopy. We reveal that degradation of proteins requires sequential, coordinated activity of distinct tubular sub-segments, each adapted to specific tasks. Moreover, we leverage this approach to pinpoint the nature of endo-lysosomal disorders in disease models, and show that compensatory uptake in later regions of the proximal tubule limits urinary protein loss. This means that measurement of proteinuria likely underestimates severity of endocytotic defects in patients.


Subject(s)
Kidney , Protein Processing, Post-Translational , Animals , Biomarkers , Kidney Tubules, Proximal , Mice , Proteinuria
6.
Acta Physiol (Oxf) ; 235(2): e13815, 2022 06.
Article in English | MEDLINE | ID: mdl-35334154

ABSTRACT

AIMS: Dietary inorganic phosphate (Pi) modulates renal Pi reabsorption by regulating the expression of the NaPi-IIa and NaPi-IIc Pi transporters. Here, we aimed to clarify the role of several Pi-regulatory mechanisms including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) and inositol hexakisphosphate kinases (IP6-kinases) in the acute regulation of NaPi-IIa and NaPi-IIc. METHODS: Wildtype (WT) and PTH-deficient mice (PTH-KO) with/without inhibition of FGF23 signalling were gavaged with Pi/saline and examined at 1, 4 and 12 h. RESULTS: Pi-gavage elevated plasma Pi and decreased plasma Ca2+ in both genotypes after 1 h Within 1 h, Pi-gavage decreased NaPi-IIa abundance in WT and PTH-KO mice. NaPi-IIc was downregulated 1 h post-administration in WT and after 4 h in PTH-KO. PTH increased after 1 h in WT animals. After 4 h Pi-gavage, FGF23 increased in both genotypes being higher in the KO group. PTHrp and dopamine were not altered by Pi-gavage. Blocking FGF23 signalling blunted PTH upregulation in WT mice and reduced NaPi-IIa downregulation in PTH-KO mice 4 h after Pi-gavage. Inhibition of IP6-kinases had no effect. CONCLUSIONS: (1) Acute downregulation of renal Pi transporters in response to Pi intake occurs also in the absence of PTH and FGF23 signalling, (2) when FGF23 signalling is blocked, a partial contribution of PTH is revealed, (3) IP6 kinases, intracellular Pi-sensors in yeast and bacteria, are not involved, and (4) Acute Pi does not alter PTHrp and dopamine. Thus, signals other than PTH, PTHrp, FGF23 and dopamine contribute to renal adaption.


Subject(s)
Phosphates , Sodium-Phosphate Cotransporter Proteins, Type IIa , Animals , Dopamine/metabolism , Fibroblast Growth Factors , Kidney/metabolism , Mice , Parathyroid Hormone/metabolism , Parathyroid Hormone/pharmacology , Parathyroid Hormone-Related Protein/metabolism , Parathyroid Hormone-Related Protein/pharmacology , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Phosphates/pharmacology , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
7.
Methods Mol Biol ; 2275: 393-402, 2021.
Article in English | MEDLINE | ID: mdl-34118052

ABSTRACT

Kidneys are highly aerobic organs and their function is tightly coupled to mitochondrial energy production. Renal tubular cells, particularly the proximal tubule (PT), require an abundance of mitochondria to provide sufficient energy for regulating fluid and electrolyte balance. Meanwhile, mitochondrial defects are implicated in a range of different kidney diseases. Multiphoton microscopy (MP) is a powerful tool that allows detailed study of mitochondrial morphology, dynamics, and function in kidney tissue. Here, we describe how MP can be used to image mitochondria in kidney tubular cells, either ex vivo in tissue slices or in vivo in living rodents, using both endogenous and exogenous fluorescent molecules. Moreover, changes in mitochondrial signals can be followed in real time in response to different insults or stimuli, in parallel with other important readouts of kidney tubular function, such as solute uptake and trafficking.


Subject(s)
Kidney Tubules, Proximal/metabolism , Mitochondria/metabolism , Animals , Fluorescent Dyes/chemistry , Humans , Kidney Tubules, Proximal/diagnostic imaging , Mice , Microscopy, Fluorescence, Multiphoton/methods
8.
Kidney Int ; 100(3): 527-535, 2021 09.
Article in English | MEDLINE | ID: mdl-34015315

ABSTRACT

The development of intravital imaging with multiphoton microscopy has had a major impact on kidney research. It provides the unique opportunity to visualize dynamic behavior of cells and organelles in their native environment and to relate this to the complex 3-dimensional structure of the organ. Moreover, changes in cell/organelle function can be followed in real time in response to physiological interventions or disease-causing insults. However, realizing the enormous potential of this exciting approach has necessitated overcoming several substantial practical hurdles. In this article, we outline the nature of these challenges and how a variety of technical advances have provided effective solutions. In particular, improvements in laser/microscope technology, fluorescent probes, transgenic animals, and abdominal windows are collectively making previously opaque processes visible. Meanwhile, the rise of machine learning-based image analysis is facilitating the rapid generation of large amounts of quantitative data, amenable to deeper statistical interrogation. Taken together, the increased capabilities of multiphoton imaging are opening up huge new possibilities to study structure-function relationships in the kidney in unprecedented detail. In addition, they are yielding important new insights into cellular mechanisms of tissue damage, repair, and adaptive remodeling during disease states. Thus, intravital microscopy is truly entering an exciting new era in translational kidney research.


Subject(s)
Intravital Microscopy , Microscopy, Fluorescence, Multiphoton , Abdomen , Animals , Fluorescent Dyes , Kidney/diagnostic imaging
9.
J Am Soc Nephrol ; 32(2): 342-356, 2021 02.
Article in English | MEDLINE | ID: mdl-33478973

ABSTRACT

BACKGROUND: The kidney plays an important role in maintaining normal blood pH. Metabolic acidosis (MA) upregulates the pathway that mitochondria in the proximal tubule (PT) use to produce ammonia and bicarbonate from glutamine, and is associated with AKI. However, the extent to which MA causes AKI, and thus whether treating MA would be beneficial, is unclear. METHODS: Gavage with ammonium chloride induced acute MA. Multiphoton imaging of mitochondria (NADH/membrane potential) and transport function (dextran/albumin uptake), oxygen consumption rate (OCR) measurements in isolated tubules, histologic analysis, and electron microscopy in fixed tissue, and urinary biomarkers (KIM-1/clara cell 16) assessed tubular cell structure and function in mouse kidney cortex. RESULTS: MA induces an acute change in NAD redox state (toward oxidation) in PT mitochondria, without changing the mitochondrial energization state. This change is associated with a switch toward complex I activity and decreased maximal OCR, and a major alteration in normal lipid metabolism, resulting in marked lipid accumulation in PTs and the formation of large multilamellar bodies. These changes, in turn, lead to acute tubular damage and a severe defect in solute uptake. Increasing blood pH with intravenous bicarbonate substantially improves tubular function, whereas preinjection with the NAD precursor nicotinamide (NAM) is highly protective. CONCLUSIONS: MA induces AKI via changes in PT NAD and lipid metabolism, which can be reversed or prevented by treatment strategies that are viable in humans. These findings might also help to explain why MA accelerates decline in function in CKD.


Subject(s)
Acidosis/etiology , Acute Kidney Injury/etiology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Lipid Metabolism/physiology , NAD/metabolism , Acidosis/metabolism , Acidosis/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Kidney Cortex/metabolism , Kidney Cortex/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/pathology , Oxygen Consumption/physiology
10.
Am J Physiol Renal Physiol ; 319(2): F245-F255, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32567348

ABSTRACT

Ca2+ is an important second messenger that translates extracellular stimuli into intracellular responses. Although there has been significant progress in understanding Ca2+ dynamics in organs such as the brain, the nature of Ca2+ signals in the kidney is still poorly understood. Here, we show that by using a genetically expressed highly sensitive reporter (GCaMP6s), it is possible to perform imaging of Ca2+ signals at high resolution in the mouse kidney in vivo. Moreover, by applying machine learning-based automated analysis using a Ca2+-independent signal, quantitative data can be extracted in an unbiased manner. By projecting the resulting data onto the structure of the kidney, we show that different tubular segments display highly distinct spatiotemporal patterns of Ca2+ signals. Furthermore, we provide evidence that Ca2+ activity in the proximal tubule decreases with increasing distance from the glomerulus. Finally, we demonstrate that substantial changes in intracellular Ca2+ can be detected in proximal tubules in a cisplatin model of acute kidney injury, which can be linked to alterations in cell structure and transport function. In summary, we describe a powerful new tool to investigate how single cell behavior is integrated with whole organ structure and function and how it is altered in disease states relevant to humans.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Kidney Glomerulus/metabolism , Kidney Tubules, Proximal/metabolism , Acute Kidney Injury/metabolism , Animals , Humans , Kidney/anatomy & histology , Kidney/metabolism , Kidney Tubules, Proximal/anatomy & histology , Mice
11.
FASEB J ; 34(6): 8510-8525, 2020 06.
Article in English | MEDLINE | ID: mdl-32367531

ABSTRACT

Alpha intercalated cells (αICs) in the kidney collecting duct (CD) belong to a family of mitochondria rich cells (MRCs) and have a crucial role in acidifying the urine via apical V-ATPase pumps. The nature of metabolism in αICs and its relationship to transport was not well-understood. Here, using multiphoton live cell imaging in mouse kidney tissue, FIB-SEM, and other complementary techniques, we provide new insights into mitochondrial structure and function in αICs. We show that αIC mitochondria have a rounded structure and are not located in close proximity to V-ATPase containing vesicles. They display a bright NAD(P)H fluorescence signal and low uptake of voltage-dependent dyes, but are energized by a pH gradient. However, expression of complex V (ATP synthase) is relatively low in αICs, even when stimulated by metabolic acidosis. In contrast, anaerobic glycolytic capacity is surprisingly high, and sufficient to maintain intracellular calcium homeostasis in the presence of complete aerobic inhibition. Moreover, glycolysis is essential for V-ATPase-mediated proton pumping. Key findings were replicated in narrow/clear cells in the epididymis, also part of the MRC family. In summary, using a range of cutting-edge techniques to investigate αIC metabolism in situ, we have discovered that these mitochondria dense cells have a high glycolytic capacity.


Subject(s)
Glycolysis/physiology , Kidney Tubules, Collecting/metabolism , Mitochondria/metabolism , Adenosine Triphosphatases/metabolism , Animals , Calcium/metabolism , Epididymis/metabolism , Epithelial Cells/metabolism , Homeostasis/physiology , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Proton Pumps/metabolism , Proton-Translocating ATPases/metabolism
12.
Sci Rep ; 10(1): 1577, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005861

ABSTRACT

The iron chelator Deferasirox (DFX) causes severe toxicity in patients for reasons that were previously unexplained. Here, using the kidney as a clinically relevant in vivo model for toxicity together with a broad range of experimental techniques, including live cell imaging and in vitro biophysical models, we show that DFX causes partial uncoupling and dramatic swelling of mitochondria, but without depolarization or opening of the mitochondrial permeability transition pore. This effect is explained by an increase in inner mitochondrial membrane (IMM) permeability to protons, but not small molecules. The movement of water into mitochondria is prevented by altering intracellular osmotic gradients. Other clinically used iron chelators do not produce mitochondrial swelling. Thus, DFX causes organ toxicity due to an off-target effect on the IMM, which has major adverse consequences for mitochondrial volume regulation.


Subject(s)
Deferasirox/pharmacology , Iron Chelating Agents/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Animals , Cell Line , Humans , Kidney/drug effects , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Permeability/drug effects
13.
J Am Soc Nephrol ; 29(11): 2696-2712, 2018 11.
Article in English | MEDLINE | ID: mdl-30301861

ABSTRACT

BACKGROUND: The kidney proximal convoluted tubule (PCT) reabsorbs filtered macromolecules via receptor-mediated endocytosis (RME) or nonspecific fluid phase endocytosis (FPE); endocytosis is also an entry route for disease-causing toxins. PCT cells express the protein ligand receptor megalin and have a highly developed endolysosomal system (ELS). Two PCT segments (S1 and S2) display subtle differences in cellular ultrastructure; whether these translate into differences in endocytotic function has been unknown. METHODS: To investigate potential differences in endocytic function in S1 and S2, we quantified ELS protein expression in mouse kidney PCTs using real-time quantitative polymerase chain reaction and immunostaining. We also used multiphoton microscopy to visualize uptake of fluorescently labeled ligands in both living animals and tissue cleared using a modified CLARITY approach. RESULTS: Uptake of proteins by RME occurs almost exclusively in S1. In contrast, dextran uptake by FPE takes place in both S1 and S2, suggesting that RME and FPE are discrete processes. Expression of key ELS proteins, but not megalin, showed a bimodal distribution; levels were far higher in S1, where intracellular distribution was also more polarized. Tissue clearing permitted imaging of ligand uptake at single-organelle resolution in large sections of kidney cortex. Analysis of segmented tubules confirmed that, compared with protein uptake, dextran uptake occurred over a much greater length of the PCT, although individual PCTs show marked heterogeneity in solute uptake length and three-dimensional morphology. CONCLUSIONS: Striking axial differences in ligand uptake and ELS function exist along the PCT, independent of megalin expression. These differences have important implications for understanding topographic patterns of kidney diseases and the origins of proteinuria.


Subject(s)
Endocytosis/physiology , Kidney Tubules, Proximal/anatomy & histology , Kidney Tubules, Proximal/physiology , Animals , Endosomes/metabolism , Intravital Microscopy , Kidney Tubules, Proximal/diagnostic imaging , Ligands , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Muramidase/metabolism , Protein Transport
14.
Am J Physiol Renal Physiol ; 315(6): F1613-F1625, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30132348

ABSTRACT

Kidney proximal tubules (PTs) are densely packed with mitochondria, and defects in mitochondrial function are implicated in many kidney diseases. However, little is known about intrinsic mitochondrial function within PT cells. Here, using intravital multiphoton microscopy and live slices of mouse kidney cortex, we show that autofluorescence signals provide important functional readouts of redox state and substrate metabolism and that there are striking axial differences in signals along the PT. Mitochondrial NAD(P)H intensity was similar in both PT segment (S)1 and S2 and was sensitive to changes in respiratory chain (RC) redox state, whereas cytosolic NAD(P)H intensity was significantly higher in S2. Mitochondrial NAD(P)H increased in response to lactate and butyrate but decreased in response to glutamine and glutamate. Cytosolic NAD(P)H was sensitive to lactate and pyruvate and decreased dramatically in S2 in response to inhibition of glucose metabolism. Mitochondrial flavoprotein (FP) intensity was markedly higher in S2 than in S1 but was insensitive to changes in RC redox state. Mitochondrial FP signal increased in response to palmitate but decreased in response to glutamine and glutamate. Fluorescence lifetime decays were similar in both S1 and S2, suggesting that intensity differences are explained by differences in abundance of the same molecular species. Expression levels of known fluorescent mitochondrial FPs were higher in S2 than S1. In summary, substantial metabolic information can be obtained in kidney tissue using a label-free live imaging approach, and our findings suggest that metabolism is tailored to the specialized functions of S1 and S2 PT segments.


Subject(s)
Energy Metabolism , Kidney Tubules, Proximal/metabolism , Microscopy, Fluorescence, Multiphoton , Mitochondria/metabolism , Animals , Biomarkers/metabolism , In Vitro Techniques , Kidney Tubules, Proximal/cytology , Male , Mice, Inbred C57BL , NADP/metabolism , Oxidation-Reduction
15.
Physiol Rep ; 6(7): e13667, 2018 04.
Article in English | MEDLINE | ID: mdl-29611340

ABSTRACT

Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted anti-oxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS-31, another targeted anti-oxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an anti-oxidant component (quinone) by a 10-carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQ-induced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to anti-oxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain.


Subject(s)
Antioxidants/toxicity , Kidney Tubules, Proximal/drug effects , Mitochondrial Swelling/drug effects , Organophosphorus Compounds/toxicity , Ubiquinone/analogs & derivatives , Animals , Cells, Cultured , Kidney Tubules, Proximal/pathology , Mice , Mitochondria/drug effects , Mitochondria/pathology , Opossums , Ubiquinone/toxicity
16.
Nat Protoc ; 9(3): 586-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24525752

ABSTRACT

Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires <1 min and <5 min for 2D and 3D images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Software , Subcellular Fractions/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...