Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 15(42): 8543-8551, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31638625

ABSTRACT

The question of how a dissipative geometrical transport system changes towards a topological transport system is important to render a fragile transport into a robust transport. We show how a macroscopic magnetic topological transport of solid state spheres changes to a geometrical transport of ferrofluid droplets, when instead of a solid state object, soft matter is transported. The key difference when comparing solid objects with fluid droplets is the possibility to split a ferrofluid droplet into two droplets. It is shown how this fundamental difference also fundamentally changes the transport properties. Hence, experimentally and theoretically the transport on top of a periodic two-dimensional hexagonal magnetic pattern of (i) a single macroscopic steel sphere, (ii) a doublet of wax/magnetite composite spheres, and (iii) an immiscible mixture of ferrofluid droplets with a perfluorinated liquid is analyzed. The transport of all these magnetic objects is achieved by moving an external permanent magnet on a closed modulation loop around the two-dimensional magnetic pattern. The transport of one and also that of two objects per unit cell is topologically protected and characterized by discrete displacements of the particles as we continuously scan through a family of modulation loops. The direction and the type of transport are characterized by the winding numbers of the modulation loops around special objects in control space, which is the space for the possible directions of the external magnetic field. The winding numbers necessary for characterizing the topological transport increase with the number of particles per unit cell. The topological character of the transport is destroyed, when transporting a large collection of particles per unit cell, like it is in the case of a macroscopic assembly of magnetic nanoparticles in a ferrofluid droplet for which the transport is geometrical and no longer topological. To characterize the change in the transport from topological to geometrical, we perform computer simulations of the transport of an increasing number of particles per unit cell.

2.
Soft Matter ; 13(40): 7307-7311, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28951924

ABSTRACT

A thin film of a critical ferrofluid mixture undergoes a sequence of transitions in a magnetic field. First the application of a field induces a critical demixing of the fluid into cylindrical droplets of the minority phase immersed in an extended majority phase. At a second critical field the cylindrical shape is destabilized and transforms into a labyrinth pattern. A third wrinkling transition occurs at even higher field if the liquid has a liquid/air interface. The wrinkling is absent if the droplet has a cover-slide on top. We explain the wrinkling by the wetting behavior of the liquid/air interface that shifts the surface region away from a critical demixing point.

3.
Soft Matter ; 13(29): 5044-5075, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28703235

ABSTRACT

The topologically protected transport of colloidal particles on top of periodic magnetic patterns is studied experimentally, theoretically, and with computer simulations. To uncover the interplay between topology and symmetry we use patterns of all possible two dimensional magnetic point group symmetries with equal lengths lattice vectors. Transport of colloids is achieved by modulating the potential with external, homogeneous but time dependent magnetic fields. The modulation loops can be classified into topologically distinct classes. All loops falling into the same class cause motion in the same direction, making the transport robust against internal and external perturbations. We show that the lattice symmetry has a profound influence on the transport modes, the accessibility of transport networks, and the individual transport directions of paramagnetic and diamagnetic colloidal particles. We show how the transport of colloidal particles above a two fold symmetric stripe pattern changes from universal adiabatic transport at large elevations via a topologically protected ratchet motion at intermediate elevations toward a non-transport regime at low elevations. Transport above four-fold symmetric patterns is closely related to the two-fold symmetric case. The three-fold symmetric case however consists of a whole family of patterns that continuously vary with a phase variable. We show how this family can be divided into two topologically distinct classes supporting different transport modes and being protected by proper and improper six fold symmetries. We discuss and experimentally demonstrate the topological transition between both classes. All three-fold symmetric patterns support independent transport directions of paramagnetic and diamagnetic particles. The similarities and the differences in the lattice symmetry protected transport of classical over-damped colloidal particles versus the topologically protected transport in quantum mechanical systems are emphasized.

4.
Soft Matter ; 12(41): 8521-8527, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27714332

ABSTRACT

A mixture of an ester based ferrofluid with silicone oil and 2,6-lutidine is exposed to an external magnetic field. We find a region of composition of the ternary mixture, where weak magnetic fields of the order of a few kA m-1 induce a modulated phase with a pattern characterized by equilibrium size droplets of the minority phase immersed into the extended majority phase. While the pattern resembles in many ways the pattern of immiscible magnetic fluids, the dependence of the characteristic parameters of the pattern on the magnetic field are completely different than in immiscible fluids. We theoretically explain the pattern formation as a magnetic field induced polymerization of magnetic particles into magnetic chains that goes along with a reduction of the entropy of mixing. This entropy reduction causes the Ostwald ripening of chains into mesoscopic droplets the size of which is limited by repulsive dipolar interactions between the chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...