Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 324: 121419, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36906055

ABSTRACT

Anthropogenic environmental stressors have significantly reduced biodiversity and the capacity of remnant natural habitats to deliver ecosystem functions and services in urban areas. To mitigate these impacts and recover biodiversity and function, ecological restoration strategies are needed. While habitat restoration is proliferating in rural and peri-urban areas, strategies purposely designed to succeed under the environmental, social and political pressures of urban areas are lacking. Here, we propose that ecosystem health in marine urban areas can be improved by restoring biodiversity to the most dominant habitat, unvegetated sediments. We reintroduced a native ecosystem engineer, the sediment bioturbating worm Diopatra aciculata, and assessed their effects on microbial biodiversity and function. Results showed that worms can affect the diversity of microbes, but effects varied between locations. Worms caused shifts in microbial community composition and function at all locations. Specifically, the abundance of microbes capable of chlorophyll production (i.e. benthic microalgae) increased and the abundance of microbes capable of methane production decreased. Moreover, worms increased the abundances of microbes capable of denitrification in the site with lowest sediment oxygenation. Worms also affected microbes capable of degrading the polycyclic aromatic hydrocarbon toluene, although the direction of that effect was site-specific. This study provides evidence that a simple intervention such as the reintroduction of a single species can enhance sediment functions important for the amelioration of contamination and eutrophication, although further studies are needed to understand the variation in outcomes between sites. Nevertheless, restoration strategies targeting unvegetated sediments provide an opportunity to combat anthropogenic stressors in urban ecosystems and may be used for precondition before more traditional forms of habitat restoration such as seagrass, mangrove and shellfish restoration.


Subject(s)
Ecosystem , Geologic Sediments , Biodegradation, Environmental , Biodiversity , Eutrophication
2.
Mar Environ Res ; 165: 105243, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33476978

ABSTRACT

The marine environment is being increasingly modified by the construction of artificial structures, the impacts of which may be mitigated through eco-engineering. To date, eco-engineering has predominantly aimed to increase biodiversity, but enhancing other ecological functions is arguably of equal importance for artificial structures. Here, we manipulated complexity through habitat structure (flat, and 2.5 cm, 5 cm deep vertical and 5 cm deep horizontal crevices) and seeding with the native oyster (Saccostrea glomerata, unseeded and seeded) on concrete tiles (0.25 m × 0.25 m) affixed to seawalls to investigate whether complexity (both orientation and depth of crevices) influences particle removal rates by suspension feeders and colonisation by different functional groups, and whether there are any ecological trade-offs between these functions. After 12 months, complex seeded tiles generally supported a greater abundance of suspension feeding taxa and had higher particle removal rates than flat tiles or unseeded tiles. The richness and diversity of taxa also increased with complexity. The effect of seeding was, however, generally weaker on tiles with complex habitat structure. However, the orientation of habitat complexity and the depth of the crevices did not influence particle removal rates or colonising taxa. Colonisation by non-native taxa was low compared to total taxa richness. We did not detect negative ecological trade-offs between increased particle removal rates and diversity and abundance of key functional groups. Our results suggest that the addition of complexity to marine artificial structures could potentially be used to enhance both biodiversity and particle removal rates. Consequently, complexity should be incorporated into future eco-engineering projects to provide a range of ecological functions in urbanised estuaries.


Subject(s)
Ecosystem , Ostreidae , Animals , Biodiversity , Estuaries
3.
Mar Environ Res ; 139: 136-143, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29778444

ABSTRACT

Assessments of human impacts on natural habitats often focus on the abundance of component species, yet physiological and/or sub-lethal effects of stressors on functional attributes may be equally important to consider. Here we evaluated how artificial structures, an integral part of urbanisation in the marine environment, affects key functional properties of the habitat-forming kelp Ecklonia radiata. Given that stressors rarely occur in isolation, we assessed the effects of infrastructure across an urbanised estuary. Estuaries are ideal for studying how multiple anthropogenic and natural stressors influence potential impacts of infrastructure on habitat-forming species because these habitats usually face a wide range and levels of stressors. Here, we compared the abundance of habitat-forming macro-algae as well as the growth, erosion and photosynthetic activity of kelp in artificial and natural habitats across one of the largest urbanised estuaries in the word - Sydney Harbour. We predicted that effects of artificial structures on functional attributes of kelps would be stronger in the inner area of the Harbour, characterised by higher levels of human impacts and low flushing. Contrary to our predictions, we found that effects of infrastructure were consistent across the estuary, regardless of the ecological footprint caused by human activities or natural environmental gradients. When differences were observed between areas of the estuary, they mostly occurred independently of impacts of substrate type. Importantly, we found lower erosion rates of kelp on pilings than on reefs, likely resulting in lower production of detritus in estuaries where natural reefs are degraded or lost and pilings added. Such impacts have important implications for the connectivity among coastal habitats and secondary productivity in adjacent and remote habitats, which are highly dependent on the exportation of kelp detritus. Our study is the first to assess potential functional consequences of urbanisation through physiological and/or biomechanical effects on habitat-formers, an often overlooked mechanism of environmental impact on ecosystem functioning.


Subject(s)
Conservation of Natural Resources , Estuaries , Kelp , Ecosystem , Environment , Urbanization
4.
J Environ Manage ; 217: 939-950, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29679916

ABSTRACT

Historical ecology can teach us valuable lessons on the processes and drivers of environmental change that can inform future monitoring priorities and management strategies. Environmental data to study environmental history, however, is often absent or of low quality. Even when studying changes occurring during the last few decades, monitoring efforts are scarce due to logistical and cost limitations, leaving large areas unassessed. The aim of this study is to evaluate the use of estuarine water colour as an indicator of historical environmental change in catchments. Water colour change was assessed in estuaries in Australia from 1987 to 2015 using satellite remote sensing. Random points were selected for each estuary and applied to the Australian Geoscience Data Cube (based on Landsat images) to obtain reflectance data through time. We propose a framework where (i) water colour is used to detect historical changes in catchments using generalised additive models, (ii) possible stressors and pressures driving those changes are evaluated using other available historical data, and (iii) lessons learned inform appropriate monitoring and management actions. This framework represents a novel approach to generate historical data for large-scale assessments of environmental change at catchment level, even in poorly studied areas.


Subject(s)
Environmental Monitoring , Remote Sensing Technology , Australia , Ecology , Estuaries
5.
J Environ Manage ; 189: 109-114, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28024197

ABSTRACT

Urbanisation in terrestrial systems has driven architects, planners, ecologists and engineers to collaborate on the design and creation of more sustainable structures. Examples include the development of 'green infrastructure' and the introduction of wildlife corridors that mitigate urban stressors and provide positive ecological outcomes. In contrast, efforts to minimise the impacts of urban developments in marine environments have been far more restricted in their extent and scope, and have often overlooked the ecological role of the built environment as potential habitat. Urban foreshore developments, i.e. those built on the interface of intertidal and/or subtidal zones, have the potential to incorporate clear multi-functional outcomes, by supporting novel ecosystems. We present a step-by-step eco-engineering framework for 'building blue' that will allow coastal managers to facilitate planning and construction of sustainable foreshore developments. Adopting such an approach will incorporate ecological principles, thereby mitigating some of the environmental impacts, creating more resilient urban infrastructure and environments, and maximising benefits to the multiple stakeholders and users of marine urban waterfronts.


Subject(s)
Conservation of Natural Resources , Urbanization , Ecology/methods , Ecosystem , Engineering , Environment , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...