Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5844, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34615880

ABSTRACT

The excellent optoelectronic performance of lead halide perovskites has generated great interest in their fundamental properties. The polar nature of the perovskite lattice means that electron-lattice coupling is governed by the Fröhlich interaction. Still, considerable ambiguity exists regarding the phonon modes that participate in this crucial mechanism. Here, we use multiphonon Raman scattering and THz time-domain spectroscopy to investigate Fröhlich coupling in CsPbBr3. We identify a longitudinal optical phonon mode that dominates the interaction, and surmise that this mode effectively defines exciton-phonon scattering in CsPbBr3, and possibly similar materials. It is additionally revealed that the observed strength of the Fröhlich interaction is significantly higher than the expected intrinsic value for CsPbBr3, and is likely enhanced by carrier localization in the colloidal perovskite nanocrystals. Our experiments also unearthed a dipole-related dielectric relaxation mechanism which may impact transport properties.

2.
J Phys Chem Lett ; 5(15): 2717-22, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-26277969

ABSTRACT

Significant overpotentials between the sensitizer and both the electron and hole conductors hamper the performance of sensitized solar cells, leading to a reduced photovoltage. We show that by using properly designed type-II quantum dots (QDs) between the sensitizer and the hole conductor in thin absorber cells, it is possible to increase the open circuit voltage (Voc) by more than 100 mV. This increase is due to the formation of a photoinduced dipole (PID) layer. Photogenerated holes in the type-II QDs are retained in the core for a relatively long time, allowing for the accumulation of a positively charged layer. Negative charges are, in turn, injected and accumulated in the TiO2 anode, creating a dipole moment, which negatively shifts the TiO2 conduction band relative to the electrolyte. We study this phenomenon using a unique TiO2/CdSe/(ZnSe:Te/CdS)/polysulfide system, where the formation of a PID depends on the color of the illumination. The PID concept thus introduces a new design strategy, where the operating parameters of the solar cell can be manipulated separately.

3.
Nano Lett ; 13(9): 4456-61, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23937343

ABSTRACT

A high photovoltage is an essential ingredient for the construction of a high-efficiency quantum dot sensitized solar cell (QDSSC). In this paper we present a novel configuration of QDSSC which incorporates the photoinduced dipole (PID) phenomenon for improved open circuit voltage (Voc). This configuration, unlike previously studied ones with molecular dipoles, is based on a dipole moment which is created only under illumination and is a result of exciton dissociation. The generation of photodipoles was achieved by the creation of long-lived trapped holes inside a core of type-II ZnSe/CdS colloidal core/shell QDs, which are placed on top of the standard CdS QD sensitizer layer. Upon photoexcitation, the created photodipole negatively shifts the TiO2 energy bands, resulting in a photovoltage that is higher by ∼100 mV compared to the standard cell, without type-II QDs. The extra photovoltage gained diminishes the excessive overpotential losses caused by the energetic difference between the CdS sensitizer layer and the TiO2, without harming the charge injection processes. Moreover, we show that the extent of the additional photovoltage is controlled by the illumination intensity. This work provides new understanding regarding the operation mechanisms of photoelectrochemical cells, while presenting a new strategy for constructing a high-voltage QDSSCs. In addition, the PID effect has the potential to be implemented in other promising photovoltaic technologies.

4.
Nano Lett ; 12(4): 2095-100, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22452287

ABSTRACT

The effect of the shape of nanocrystal sensitizers in photoelectrochemical cells is reported. CdSe quantum rods of different dimensions were effectively deposited rapidly by electrophoresis onto mesoporous TiO(2) electrodes and compared with quantum dots. Photovoltaic efficiency values of up to 2.7% were measured for the QRSSC, notably high values for TiO(2) solar cells with ex situ synthesized nanoparticle sensitizers. The quantum rod-based solar cells exhibit a red shift of the electron injection onset and charge recombination is significantly suppressed compared to dot sensitizers. The improved photoelectrochemical characteristics of the quantum rods over the dots as sensitizers is assigned to the elongated shape, allowing the build-up of a dipole moment along the rod that leads to a downward shift of the TiO(2) energy bands relative to the quantum rods, leading to improved charge injection.

5.
J Phys Chem Lett ; 3(17): 2436-41, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-26292129

ABSTRACT

The effect of multilayer sensitization in quantum-dot (QD)-sensitized solar cells is reported. A series of electrodes, consisting of multilayer CdSe QDs were assembled on a compact TiO2 layer. Photocurrent measurements along with internal quantum efficiency calculation reveal similar electron collection efficiency up to a 100 nm thickness of the QD layers. Moreover, the optical density and the internal quantum efficiency measurements reveal that the desired surface area of the TiO2 electrode should be increased only by a factor of 17 compared with a compact electrode. We show that the sensitization of low-surface-area TiO2 electrode with QD layers increases the performance of the solar cell, resulting in 3.86% efficiency. These results demonstrate a conceptual difference between the QD-sensitized solar cell and the dye-based system in which dye multilayer decreases the cell performance. The utilization of multilayer QDs opens new opportunities for a significant improvement of quantum-dot-sensitized solar cells via innovative cell design.

6.
ACS Nano ; 4(3): 1293-8, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20155968

ABSTRACT

A new design of dye-sensitized solar cells involves colloidal semiconductor quantum dots that serve as antennas, funneling absorbed light to the charge separating dye molecules via nonradiative energy transfer. The colloidal quantum dot donors are incorporated into the solid titania electrode resulting in high energy transfer efficiency and significant improvement of the cell stability. This design practically separates the processes of light absorption and charge carrier injection, enabling us to optimize each of these separately. Incident photon-to-current efficiency measurements show a full coverage of the visible spectrum despite the use of a red absorbing dye, limited only by the efficiency of charge injection from the dye to the titania electrode. Time resolved luminescence measurements clearly relate this to Forster resonance energy transfer from the quantum dots to the dye. The presented design introduces new degrees of freedom in the utilization of quantum dot sensitizers for photovoltaic cells. In particular, it opens the way toward the utilization of new materials whose band offsets do not allow direct charge injection.

SELECTION OF CITATIONS
SEARCH DETAIL
...