Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 30(13): 3310-20, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20404091

ABSTRACT

In mammals, cell lineage specification is established at the blastocyst stage. At this stage, transcription factor Cdx2 represses pluripotency genes, thus promoting extraembryonic trophoblast fate. Recently, transcription factor Gata3 was shown to act in a parallel pathway in promoting trophoblast cell fate, suggesting that there are more factors working in the trophoblast lineage. Here, we report that the transcription factor Tcfap2c is expressed at a high level in the trophectoderm and is able to induce trophoblast fate in embryonic stem cells. Trophoblast fate induced by Tcfap2c does not require Cdx2 and vice versa, suggesting that the molecules act in alternative pathways. However, both Tcfap2c and Cdx2 are required for the upregulation of Elf5, a marker of trophoblast stem cell maintenance, suggesting that both factors are required for stable trophoblast induction. Tcfap2c-induced trophoblast-like cells are stable in long-term culture, indicating that they are capable of self-renewal. Tcfap2c-controlled trophoblast maintenance involves the induction of Cdx2 and the repression of the pluripotency factor Nanog. Tcfap2c-induced trophoblast-like cells differentiate to trophoblast derivatives in vitro and contribute to the trophectoderm in blastocysts in vivo. Taken together, these observations suggest that Tcfap2c and Cdx2 cooperate to override the pluripotency program and establish the extraembryonic trophoblast maintenance program in murine embryos.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Homeodomain Proteins/metabolism , Transcription Factor AP-2/metabolism , Transcription Factors/metabolism , Trophoblasts , Animals , Biomarkers/metabolism , CDX2 Transcription Factor , Cell Lineage , Cells, Cultured , Embryonic Development/physiology , Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Mice , Mice, Knockout , Nanog Homeobox Protein , Transcription Factor AP-2/genetics , Transcription Factors/genetics , Trophoblasts/cytology , Trophoblasts/physiology
2.
Genome Biol ; 6(13): 246, 2005.
Article in English | MEDLINE | ID: mdl-16420676

ABSTRACT

The AP-2 family of transcription factors consists of five different proteins in humans and mice: AP-2alpha, AP-2beta, AP-2gamma, AP-2delta and AP-2epsilon. Frogs and fish have known orthologs of some but not all of these proteins, and homologs of the family are also found in protochordates, insects and nematodes. The proteins have a characteristic helix-span-helix motif at the carboxyl terminus, which, together with a central basic region, mediates dimerization and DNA binding. The amino terminus contains the transactivation domain. AP-2 proteins are first expressed in primitive ectoderm of invertebrates and vertebrates; in vertebrates, they are also expressed in the emerging neural-crest cells, and AP-2alpha-/- animals have impairments in neural-crest-derived facial structures. AP-2beta is indispensable for kidney development and AP-2gamma is necessary for the formation of trophectoderm cells shortly after implantation; AP-2alpha and AP-2gamma levels are elevated in human mammary carcinoma and seminoma. The general functions of the family appear to be the cell-type-specific stimulation of proliferation and the suppression of terminal differentiation during embryonic development.


Subject(s)
Multigene Family , Transcription Factor AP-2/metabolism , Animals , Biological Evolution , Humans , Phylogeny , Protein Binding , Transcription Factor AP-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...